The observed surface energy balance fluxes are essential to improve model forecasting ability but such data are scarce for subtropical cities and urban areas with tall buildings. One year of eddy covariance flux data for an area within Shanghai with a wide range of building heights (8-150 m, mean by direction) are analysed by wind direction. Consideration is given to how to distinguish between local-and micro-scale fluxes. At the local-scale, median daily peaks of sensible heat flux occur in the early afternoon (winter: 87 W m −2 , spring: 205 W m −2 , summer: 292 W m −2 , autumn: 135 W m −2 ). The latent heat flux is small in winter (median daily maxima 21 W m −2 ) and slightly larger in spring, summer and autumn (49, 65, 49 W m −2 , respectively). The monthly mean daytime Bowen ratio under all-sky conditions ranges from 2 to 4.7. At this site, with predominately impervious surface (85% buildings/pavement, 14% vegetation), the enhancement of evaporation following rainfall usually lasts for about 12 h. Consistently larger Bowen ratios at the micro-scale than the local-scale are attributed to roughness effects and the impact of extensive areas of dry walls. The daily median CO 2 flux is dominated by traffic emissions, with two peaks associated with morning and evening rush hours. The data provide insights into urban surface controls on momentum, energy and carbon dynamics, with implications for urban planning strategies in the context of rapid global urbanization and climate change.
Observations of atmospheric conditions and processes in cities are fundamental to understanding the interactions between the urban surface and weather/climate, improving the performance of urban weather, air quality, and climate models, and providing key information for city end users (e.g., decision makers, stakeholders, public). In this paper, Shanghai’s Urban Integrated Meteorological Observation Network (SUIMON) and some examples of intended applications are introduced. Its characteristics include being multipurpose (e.g., forecast, research, service), multifunction (e.g., high-impact weather, city climate, special end users), multiscale (e.g., macro/meso, urban, neighborhood, street canyon), multivariable (e.g., thermal, dynamic, chemical, biometeorological, ecological), and multiplatform (e.g., radar, wind profiler, ground based, satellite based, in situ observation/sampling). Underlying SUIMON is a data management system to facilitate exchange of data and information. The overall aim of the network is to improve coordination strategies and instruments, to identify data gaps based on science- and user-driven requirements, and to intelligently combine observations from a variety of platforms by using a data assimilation system that is tuned to produce the best estimate of the current state of the urban atmosphere.
To investigate the boundary layer dynamics of the coastal megacity Shanghai, China, backscatter data measured by a Vaisala CL51 ceilometer are analyzed with a modified ideal curve fitting algorithm. The boundary layer height zi retrieved by this method and from radiosondes compare reasonably overall. Analyses of mobile and stationary ceilometer data provide spatial and temporal characteristics of Shanghai’s boundary layer height. The consistency between when the ceilometer is moving and stationary highlights the potential of mobile observations of transects across cities. An analysis of 16 months of zi measured at the Fengxian site in Shanghai reveals that the diurnal variation of zi in the four seasons follows the expected pattern; for all seasons zi starts to increase at sunrise, reflecting the influence of solar radiation. However, the boundary layer height is generally higher in autumn and winter than in summer and spring (mean hourly averaged zi for days with low cloud fraction at 1100–1200 local time are 900, 654, 934, and 768 m for spring, summer, autumn, and winter, respectively). This is attributed to seasonal differences in the dominant meteorological conditions, including the effects of a sea breeze at the near-coastal Fengxian site. Given the success of the retrieval method, other ceilometers installed across Shanghai are now being analyzed to understand more about the spatial dynamics of zi and to investigate in more detail the effects of prevailing mesoscale circulations and their seasonal dynamics.
Abstract:Efforts to reduce land-based non-point source (NPS) pollutions from watersheds to coastal waters are ongoing all around the world. In this study, annual yield of NPS nitrogen (NPS-N) pollution in Jiaodong Peninsula, China from 1979 to 2008 was estimated. The results showed that: from 1979 to 2008, NPS-N yields exhibited significant inter-annual variations and an increasing trend on decadal scale. High NPS-N yield was mainly found in east and south parts, as well as the urbanized coastal regions in Jiaodong Peninsula. Among the 32 river basins, the three largest basins yielded more than 41.16% of the NPS-N. However, some small coastal watersheds along the South Yellow Sea and Jiaozhou Bay had higher per unit area yield. Most of the small watersheds characterized by seasonal runoff had coastal waters pertain to mild and moderate pollution levels. The ratio of watershed area to shoreline length and the up-stream land use had significant impacts on NPS-N flux through the shoreline. Among the four adjacent coastal areas of Jiaodong Peninsula, Jiaozhou Bay was the most noteworthy one not only because of high levels of land-based NPS-N pollution but also because of its nearly enclosed structure. The combination between integrated coastal zone management and integrated river basin management, land use planning and landscape designing in Jiaodong Peninsula is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.