Thin, rectangular C60 nanorods in face‐centered cubic structure are synthesized by using m‐xylene as a shape controller. These unusual nanorods (see figure) can easily grow on various substrates. The smallest nanorods have widths smaller than 30 nm. The nanorods are highly crystalline in single phase. A significant expansion of the lattice constant is also found in the C60 nanorods when their widths decrease below about 80 nm.
Single-crystalline C 60 ‚1m-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C 60 solution in m-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of ≈10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C 60 crystals in air. Both UV and Raman results indicate that there is no charge transfer between C 60 and m-xylene. It was found that the interaction between C 60 and m-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C 60 molecule and induces strong PL from the solvate nanorods.
BackgroundInflammasomes, which mediate maturation of interleukin-1β (IL-β) and interleukin-18 (IL-18) and lead to pyroptosis, have been linked to various autoimmune disorders. This study investigated whether they are involved in the pathogenesis of autoimmune thyroiditis (AIT).MethodsWe collected thyroid tissues from 50 patients with AIT and 50 sex- and age-matched controls. Serum levels of free T3, free T4, thyrotropin, thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb) were measured by electrochemiluminescent immunoassays. Expression of several inflammasome components, the NOD-like receptor (NLR) family pyrin domain containing 1 (NLRP1), NLRP3, CARD-domain containing 4 (NLRC4), absent in melanoma 2 (AIM2), the apoptosis-associated speck-like protein that contains a caspase recruitment domain (ASC), caspase-1, IL-1β, and IL-18 was determined by real-time PCR and western blot. Immunohistochemistry was used to localize the expression of NLRP1, NLRP3, NLRC4, and AIM2. The Nthy-ori 3-1 thyroid cell line was stimulated with tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-17A, interleukin-6, and poly(dA:dT). The levels of IL-18 and IL-1β in the cell supernatant were measured by enzyme-linked immunosorbent assay, and lactate dehydrogenase was quantified by absorptiometry. ASC specks were examined by confocal immunofluorescence microscopic analysis. Cell death was examined by flow cytometry, and the N-terminal domain of gasdermin D was detected by western blot analysis.ResultsExpression of NLRP1, NLRP3, NLRC4, AIM2, ASC, caspase-1, pro IL-1β, pro IL-18, mRNA, and protein was significantly increased in thyroid tissues from patients with AIT, and enhanced posttranslational maturation of caspase-1, IL-18 and IL-1β was also observed. Expression of NLRP1, NLRP3, NLRC4, and AIM2 was localized mainly in thyroid follicular cells adjacent to areas of lymphatic infiltration. The thyroid mRNA level of NLRP1 and ASC was correlated to the serum TPOAb and TgAb levels in the AIT group. TNF-α and IFN-γ had a priming effect on the expression of multiple inflammasome components in thyroid cells. IFN-γ was found to strengthen poly(dA:dT)-induced cell pyroptosis and bioactive IL-18 release.ConclusionOur work has demonstrated for the first time that multiple inflammasomes are associated with AIT pathogenesis. The identified NLRP3, NLRP1, NLRC4, AIM2 inflammasomes and their downstream cytokines may represent potential therapeutic targets and biomarkers of AIT.
Raman spectra of single-walled carbon nanotubes ͑SWNTs͒ with diameters of 0.6-1.3 nm have been studied under high pressure. A "plateau" in the pressure dependence of the G-band frequencies was observed in all experiments, both with and without pressure transmission medium. Near the onset of the G-band plateau, the corresponding radial breathing mode ͑RBM͒ lines become very weak. A strong broadening of the full width at half maximum of the RBMs just before the onset of the G-band plateau suggests that a structural transition starts in the SWNTs. Raman spectra from SWNTs released from different pressures also indicate that a significant structural transition occurs during the G-band plateau process. Simulations of the structural changes and the corresponding Raman modes of a nanotube under compression show a behavior similar to the experimental observations. Based on the experimental results and the theoretical simulation, a detailed model is suggested for the structural transition of SWNTs, corresponding to the experimentally obtained Raman results in the high-pressure domain.
Superwetting surfaces require micro-/nanohierarchical structures but are mechanically weak. Moreover, such surfaces are easily polluted by amphiphiles. In this work, inorganic adhesives are presented as a building block for construction of superwetting surfaces and to promote robustness. Nanomaterials can be selected as fillers to endow the functions. We adopted a simple procedure to fabricate underwater superoleophobic surfaces by spraying a titanium dioxide suspension combined with aluminum phosphate binder on stainless steel meshes. The surfaces maintained their excellent performance in regard to oil repellency under water, oil/water separation, and self-cleaning properties after even 100 abrasion cycles with sandpaper. Robust superwetting surfaces favored by inorganic adhesives can be extended to other nanoparticles and substrates, which are potentially advantageous in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.