Resveratrol (RES) and its two natural analogues, 4,4′-dihydroxystilbene (DHS) and pinosylvin (PIN), are very important polyphenols and have attracted considerable pharmaceutical interest because of their diverse biological activities. However, their adverse effects on motor nerves and glioma cells have not been properly assessed. Herein, we surveyed the toxicity and analyzed the structure-activity relationship of these three polyphenols using transgenic zebrafish ( Danio rerio) and U87. Results indicated that, in zebrafish embryos, both DHS (1 and 10 μg/mL) with hydroxyl groups at the 4 and 4′ positions, and PIN (1 and 10 μg/mL) with hydroxyl groups at the 3 and 5 positions inhibited motor neuron growth more effectively than RES (1 and 10 μg/mL) with hydroxyl groups at the 3, 4′, and 5 positions, although their appearance is normal. Both the DHS- (10 μg/mL) and PIN (10 μg/mL) -treated groups significantly reduced the swimming distance of zebrafish compared with the RES (10 μg/mL) -treated group. In addition, DHS with the hydroxyl groups at the 4 and 4′ positions (0.002, 0.02, 0.2, 2, and 20 μM) inhibited U87 cell aggregation in a concentration-dependent manner; PIN with the hydroxyl groups at the 3 and 5 positions (0.002, 0.02, 0.2, 2, and 20 μM) promoted U87 cell aggregation in a concentration-dependent manner, while RES with three hydroxyl groups promoted U87 cell aggregation at concentrations from 0.2 to 2 μM. Taken together, DHS and PIN are more neurotoxic than RES. The position and number of hydroxyl groups significantly affected the ability of the polyphenols to aggregate into tumors in the U87 cell.
The unique morphology and gene expression of podocytes are critical for kidney function, and their abnormalities lead to nephropathies such as diabetic nephropathy and membranous nephropathy. Podocytes cultured in vitro are valuable tools to dissect the molecular mechanism of podocyte injury relative to nephropathy, however, these models have never been comprehensively compared. Here, we comprehensively compared the morphology, cytoskeleton, cell adhesion, cell spreading, cell migration, and lipid metabolism under five commonly used in vitro models including lipopolysaccharide (LPS), puromycin aminonucleoside (PAN), doxorubicin (Dox), high glucose, and glucose deprivation. Our results indicate that all stimulations significantly downregulate the expression of synaptopodin both in human and mouse podocytes. All stimulations affect podocyte morphology but show different intensity and phenotypes. In general, the five stimulations reduce cell adhesion, cell spreading, and cell migration, but the effect in human and mouse podocytes is slightly different. Human podocytes show high expression of genes enriched in the pentose phosphate pathway. Dox and PAN treatment show a strong effect on gene expression in lipid metabolism, while the other three stimulations show minimal effect. The expression of phospholipase A2 receptor (PLA2R1) and type‐1 domain‐containing protein 7 A (THSD7A) show opposite trends in given cells. Stimulations can dramatically affect the expression of PLA2R1 and THSD7A. Inhibition of super‐enhancers reduces PLA2R1 and THSD7A expression, but ERK inhibition enhances their expression. Our results demonstrate distinctive responses in five commonly used in vitro podocyte injury models and the dynamic expression of PLA2R1 and THSD7A, which supply novel information to select suitable podocyte injury models.
Background: Target-specific treatment is not available for acute kidney injury (AKI). A novel erythropoietin-derived cyclic helix B surface peptide (CHBP) protects kidneys against AKI subjected to different causes. Herein, we investigated the transcriptional profile of renoprotection induced by CHBP and its potential synergistic effects with caspase-3 siRNA (CASP3siRNA) on ischemia/reperfusion (IR) injury associated AKI. Methods: A mouse renal IR model was established by clamping bilateral pedicles for 30 min and reperfusion for 48 h. 0.03 mg/kg of CASP3siRNA/negative control (NCsiRNA) was injected via tail vein 2 h pre-surgery, with/without 24 nmol/kg of CHBP administered to peritoneal cavity at 15 min post reperfusion. The transcriptomic profile in kidneys was assessed by affymetrix gene chips, along with renal function, histology, active caspase-3 and HMGB1.Results: CHBP or CASP3siRNA significantly improved renal function and structure, with decreased caspase-3 and HMGB1 in IR kidneys. Combined treatment of CHBP and CASP3siRNA further preserved kidney structure, and reduced active caspase-3 and HMGB1. Furthermore, fold change > 1.414 and P < 0.05 were used to identify differentially expressed genes (DEGs). In IR kidneys, 281 DEGs induced by CHBP were mainly involved in promoting cell division and improving cellular function and metabolism (up-regulated STAT5B and SLC22A7). The additional administration of CASP3siRNA caused 504 and 418 DEGs in IR + CHBP kidneys with or without NCsiRNA, with 37 genes in common. These DEGs were associated with modulated apoptosis and inflammation (up-regulated BCL6,SLPI and SERPINA3M), and immunity, injury and microvascular homeostasis (up-regulated CFH and GREM1, and down-regulated ANGPTL2). Conclusions: This proof-of-effect study indicated that the synergistic renoprotection of CHBP and CASP3siRNA at the early stage of IR-induced AKI. Underlying genes, BCL6, SLPI, SERPINA3M, GREM1 and ANGPTL2, might be potential new biomarkers for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.