Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion.
MSC-derived exosomes display, among others, an efficient biocompatibility and a reduced intrinsic immunogenicity, representing a valuable vehicle for drug delivery in a tumor-therapeutic approach. Following treatment of several human mesenchymal stroma/stem-like cell (MSC) populations with sub-lethal concentrations of taxol for 24 h, exosomes were isolated and applied to different human cancer populations including A549 lung cancer, SK-OV-3 ovarian cancer, and MDA-hyb1 breast cancer cells. While MSC control exosomes revealed little if any growth inhibition on the tumor cells, exposure to taxol-loaded MSC-derived exosomes was associated with 80–90% cytotoxicity. A similar application of taxol-loaded exosomes from HuVEC displayed much fewer effects. Quantification by LC-MS/MS analysis demonstrated a 7.6-fold reduced taxol concentration in MSC exosomes when compared to equivalent cytotoxic in vitro effects achieved with taxol substances, indicating a specific and more efficient tumor-targeting property. Consequently, MSC-derived taxol exosomes were tested in vivo. Highly metastatic MDA-hyb1 breast tumors were induced in NODscid mice, and systemic intravenous application of MSC-derived taxol exosomes revealed a more than 60% reduction of subcutaneous primary tumors. Moreover, the amount of distant organ metastases observed at least in lung, liver, spleen, and kidney was reduced by 50% with MSC taxol exosomes, similar to the effects observed with taxol, although the concentration of taxol in exosomes was about 1000-fold reduced. Together, these findings in different cancer cell populations and in vivo provide promising future perspectives for drug-loaded MSC-derived exosomes in efficiently targeting primary tumors and metastases by reducing side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.