Multiwalled carbon nanotube (MWCNT)-fused silica composite powders were synthesized by solgel method and dense bulk composites were successfully fabricated via hot-pressing. This composite was characterized by XRD, HRTEM, and FESEM. MWCNTs in the hot-pressed composites are in their integrity observed by HRTEM. The electrical properties of MWCNT-fused silica composites were measured and analyzed. The electrical resistivity was found to decrease with the increase in the amount of the MWCNT loading in the composite. When the volume percentage of the MWCNTs increased to 5 vol%, the electrical resistivity of the composite is 24.99 omega cm, which is a decrease of twelve orders of value over that of pure fused silica matrix. The electrical resistivity further decreases to 1.742 omega. cm as the concentration of the MWCNTs increased to 10 vol%. The dielectric properties of the composites were also measured at the frequency ranging from 12.4 to 17.8 GHz (Ku band) at room temperature. The experimental results reveal that the dielectric properties are extremely sensitive to the volume percentage of the MWCNTs, and the permittivities, especially the imaginary permittivities, increase dramatically with the increase in the concentration of the MWCNTs. The improvement of dielectric properties in high frequency region mainly originates from the greatly increasing electrical properties of the composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.