Subheading:Grass Seed Identification Using LSP and LDA. Background:Forage plays an important role in grassland in providing food for the livestock and keeping balance for the ecological system. Automated identification of fora-ge is an important task to improve the grassland management. Forage seed is the vital organ with relatively stable characteristics. Different from the relatively obvious varia-tions among the weeds, forage seeds are very similar in color, shape, size and texture. Especially, the resemblance of some seeds from different families makes the identification more difficult. Objective:In this paper, we proposed a seed identification approach based on local similarity pattern and linear discriminant analysis for gramineous grass, one of the main forge categories of the grassland, for a better identification performance. Method:The textural features derived from local similarity pattern and histogram statistics were input into linear discriminant analysis classifier, in which the former can extract more specific textures robust to noise and rotation variance, and the latter was more discriminative with classification information. Result:Experiments conducted on similar gramineous grass seeds of 12 species demonstrated the effectiveness of the algorithm, yielding an identification accuracy of 91.07%. Conclusion:Therefore, local similarity pattern and linear discriminant analysis classifier can well solve the identification problems of similar gramineous grass seeds.
This work proposes an approach based on the difference of local fractal dimension (DLFD) for seed identification of gramineous grass, rather than shape and color of the seeds. Being an important forge category of grassland, gramineous grass has been rarely investigated for the automated identification task by the researchers. Three main steps are involved in the extraction of DLFD. At first, the ROI image is equally divided into local blocks, and the fractal dimension of the partitions are calculated. Based on the average fractal dimension of all the blocks, the DLFD can then be obtained by subtracting the individual fractal dimension and the average, magnifying the contrast of the self-similarity of the images. Euclidean Distance and the nearest neighbor classifier are finally used for similarity measurement and classification. The novelty of the approach lies in applying fractal geometry in forage seed identification, a quite new area for pattern recognition. The experimental results demonstrate the effectiveness of the proposed method by some comparative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.