The penetration behavior of nanoparticles in mucous depends on physicochemical properties of the nanoparticles and the mucus microenvironment, due to particle–mucin interactions and the presence of the mucin mesh space filtration effect. To date, it is still unclear how the surface properties of nanoparticles influence their mucus penetration behaviors in various physiological and pathophysiological conditions. In this study, we have prepared a comprehensive library of amine-, carboxyl-, and PEG-modified silica nanoparticles (SNPs) with controlled surface ligand densities. Using multiple particle tracking, we have studied the mechanism responsible for the mucus penetration behaviors of these SNPs. It was found that PEG- and amine-modified SNPs exhibited pH-independent immobilization under iso-density conditions, while carboxyl-modified SNPs exhibited enhanced movement only in weakly alkaline mucus. Biophysical characterizations demonstrated that amine- and carboxyl-modified SNPs were trapped in mucus due to electrostatic interactions and hydrogen bonding with mucin. In contrast, high-density PEGylated surface formed a brush conformation that shields particle–mucin interactions. We have further investigated the surface property-dependent mucus penetration behavior using a murine airway distribution model. This study provides insights for designing efficient transmucosal nanocarriers for prevention and treatment of pulmonary diseases.
Zwitterionic polymers have emerged as promising trans-mucus nanocarriers due to their superior antifouling properties. However, for pH-sensitive zwitterionic polymers, the effect of the pH microenvironment on their trans-mucus fate remains unclear. In this work, we prepared a library of zwitterionic polydopamine-modified silica nanoparticles (SiNPs-PDA) with an isoelectric point of 5.6. Multiple-particle tracking showed that diffusion of SiNPs-PDA in mucus with a pH value of 5.6 was 3 times faster than that in mucus with pH value 3.0 or 7.0. Biophysical analysis found that the trans-mucus behavior of SiNPs-PDA was mediated by hydrophobic and electrostatic interactions and hydrogen bonding between mucin and the particles. Furthermore, the particle distribution in the stomach, intestine, and lung demonstrated the pH-mediated mucus penetration behavior of the SiNPs-PDA. This study reveals the pH-mediated mucus penetration behavior of zwitterionic nanomaterials, which provides rational design strategies for zwitterionic polymers as nanocarriers in various mucus microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.