The commonly used two-step and one-pot synthesis methods for producing biochar require the use of iron salt solutions, resulting in the undesirable consequences of energy consumption for dewatering and potential pollution risks. To address this drawback, a magnetic sewage sludge-derived biochar (MSBC-2) was synthesized by a solvent-free method in this study. The pseudo-second-order kinetic model and Langmuir model provided the best fit to the experimental data, implying a monolayered chemisorption process of Pb2+, Cd2+and Cu2+ onto MSBC-2. As the reaction temperature increased from 25 °C to 45 °C, the maximum adsorption capacities increased from 113.64 mg·g−1 to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1 for Cd2+ and from 57.80 mg·g−1 to 74.07 mg·g−1 for Cu2+, respectively. Thermodynamic parameters (ΔG0 < 0, ΔS0 > 0, ΔH0 > 0) revealed that the adsorption processes of all three metals by MSBC-2 were favourable, spontaneous and endothermic. Surface complexation, cation-π interaction, ion exchange and electrostatic attraction mechanisms were involved in the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2. Overall, this study will provide a new perspective for the synthesis of magnetic biochar and MSBC-2 shows great potential as an adsorbent for heavy metal removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.