ObjectivePatients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD).DesignCharacterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy controls. Multidimensional data integration to reveal links between these datasets and the use of chronic kidney disease (CKD) rodent models to test the effects of intestinal microbiome on toxin accumulation and disease severity.ResultsA group of microbial species enriched in ESRD correlates tightly to patient clinical variables and encode functions involved in toxin and secondary bile acids synthesis; the relative abundance of the microbial functions correlates with the serum or faecal concentrations of these metabolites. Microbiota from patients transplanted to renal injured germ-free mice or antibiotic-treated rats induce higher production of serum uraemic toxins and aggravated renal fibrosis and oxidative stress more than microbiota from controls. Two of the species, Eggerthella lenta and Fusobacterium nucleatum, increase uraemic toxins production and promote renal disease development in a CKD rat model. A probiotic Bifidobacterium animalis decreases abundance of these species, reduces levels of toxins and the severity of the disease in rats.ConclusionAberrant gut microbiota in patients with ESRD sculpts a detrimental metabolome aggravating clinical outcomes, suggesting that the gut microbiota will be a promising target for diminishing uraemic toxicity in those patients.Trial registration numberThis study was registered at ClinicalTrials.gov (NCT03010696).
Silicon has been considered as the most promising anode candidate for next-generation lithium-ion batteries. However, the fast capacity decay caused by huge volume expansion and low electronic conductivity limit the electrochemical performance. Herein, atomic distributed, airstable, layer-by-layer-assembled Si/C (L-Si/C) is designed and in situ constructed from commercial micron-sized layered CaSi 2 alloy with the greenhouse gas CO 2 . The inner structure of Si as well as the content and graphitization of C can be regulated by simply adjusting the reaction conditions. The rationally designed layered structure can enhance electronic conductivity and mitigate volume change without disrupting the carbon layer or destroying the solid electrolyte interface. Moreover, the single-layer Si and C can enhance lithium-ion transport in active materials. With these advantages, L-Si/C anode delivers an 82.85% capacity retention even after 3200 cycles and superior rate performance. The battery-capacitance dual-model mechanism is certified via quantitative kinetics measurement. Besides, the self-standing architecture is designed via assembling L-Si/C and MXene. Lithiophilic L-Si/C can guide homogeneous Li deposition with alleviated volume change. With the MXene/L-Si/C host for lithium−metal batteries, an ultralong life span up to 500 h in a carbonate-based electrolyte is achieved. A full cell with a high-energy 5 V LiNi 0.5 Mn 1.5 O 4 cathode is constructed to verify the practicality of L-Si/C and MXene/L-Si/C. The rational design of a special layer structure may propose a strategy for other materials and energy storage systems.
Metal anodes based on a plating/stripping electrochemistry such as metallic Li, Na, K, Zn, Mg, Ca, Al, and Fe have attracted widespread attention over the past several years because of their high theoretical specific capacity, low electrochemical potential, and superior electronic conductivity. Metal anodes can be paired with cathodes to construct high-energy-density rechargeable metal batteries. However, inherent issues including large volume changes, uncontrollable growth of dangerous dendrites, and an unstable solid electrolyte interphase (SEI) hinder their further development. MXene as an emerging 2D material has shown great potential to address the inherent issues of metal anodes due to its 2D structure, abundant surface functional groups, and the ability to construct macroscopic architectures. To date, under the assistance of MXene, various strategies have been proposed to achieve stable and dendrite-free metal anodes, such as MXene-based host design, designing metalphilic MXene-based substrates, modifying the metal surface with MXene, constructing MXene arrays, and decorating separators or electrolytes with MXene. Herein the applications and advances of MXene in stable and dendrite-free metal anodes are carefully summarized and analyzed. Some perspectives and outlooks for future research are also proposed.
Lithium metal (Li) is believed to be the ultimate anode for lithium-ion batteries (LIBs) owing to the advantages of high theoretical capacity, the lowest electrochemical potential, and light weight. Nevertheless, issues such as uncontrollable growth of Li dendrites, large volume changes, high chemical reactivity, and unstable solid electrolyte interphase (SEI) hinder its rapid development and practical application. Herein a stable and dendrite-free Li-metal anode is obtained by designing a flexible and freestanding MXene/COF framework for metallic Li. COF-LZU1 microspheres are distributed among the MXene film framework. Lithiophilic COF-LZU1 microspheres as nucleation seeds can promote uniform Li nucleation by homogenizing the Li + flux and lowering the nucleation barrier, finally resulting in dense and dendrite-free Li deposition. Under the regulation of the COF-LZU1 seeds, the Coulombic efficiency of the MXene/COF-LZU1 framework and electrochemical stability of corresponding symmetric cells are obviously enhanced. Li-S full cells with the modified Li-metal anode and sulfurized polyacrylonitrile (S@PAN) cathode also exhibited a superior electrochemical performance.
Metal anodes based on a plating/stripping electrochemistry such as metallic Li, Na, K, Zn, Ca, Mg, Fe, and Al are recognized as promising anode materials for constructing next-generation high-energy-density rechargeable metal batteries owing to their low electrochemical potential, high theoretical specific capacity, superior electronic conductivity, etc. However, inherent issues such as high chemical reactivity, severe growth of dendrites, huge volume changes, and unstable interface largely impede their practical application. Covalent organic frameworks (COFs) and their derivatives as emerging multifunctional materials have already well addressed the inherent issues of metal anodes in the past several years due to their abundant metallophilic functional groups, special inner channels, and controllable structures. COFs and their derivatives can solve the issues of metal anodes by interfacial modification, homogenizing ion flux, acting as nucleation seeds, reducing the corrosion of metal anodes, and so on. Nevertheless, related reviews are still absent. Here we present a detailed review of multifunctional COFs and their derivatives in metal anodes for rechargeable metal batteries. Meanwhile, some outlooks and opinions are put forward. We believe the review can catch the eyes of relevant researchers and supply some inspiration for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.