The proper utilization of road information can improve the performance of relay-node selection methods. However, the existing schemes are only applicable to a specific road structure, and this limits their application in real-world scenarios where mostly more than one road structure exists in the Region of Interest (RoI), even in the communication range of a sender. In this paper, we propose an adaptive relay-node selection (ARNS) method based on the exponential partition to implement message broadcasting in complex scenarios. First, we improved a relay-node selection method in the curved road scenarios through the re-definition of the optimal position considering the distribution of the obstacles. Then, we proposed a criterion of classifying road structures based on their broadcast characteristics. Finally, ARNS is designed to adaptively apply the appropriate relay-node selection method based on the exponential partition in realistic scenarios. Simulation results on a real-world map show that the end-to-end broadcast delay of ARNS is reduced by at least 13.8% compared to the beacon-based relay-node selection method, and at least 14.0% compared to the trinary partitioned black-burst-based broadcast protocol (3P3B)-based relay-node selection method. The broadcast coverage is increased by 3.6–7% in curved road scenarios, with obstacles benefitting from the consideration of the distribution of obstacles. Moreover, ARNS achieves a higher and more stable packet delivery ratio (PDR) than existing methods profiting from the adaptive selection mechanism.
Data centers are fundamental facilities that support high-performance computing and large-scale data processing. To guarantee that a data center can provide excellent properties of expanding and routing, the interconnection network of a data center should be designed elaborately. Herein, we propose a novel structure for the interconnection network of data centers that can be expanded with a variable coefficient, also known as a variable expanding structure (VES). A VES is designed in a hierarchical manner and built iteratively. A VES can include hundreds of thousands and millions of servers with only a few layers. Meanwhile, a VES has an extremely short diameter, which implies better performance on routing between every pair of servers. Furthermore, we design an address space for the servers and switches in a VES. In addition, we propose a construction algorithm and routing algorithm associated with the address space. The results and analysis of simulations verify that the expanding rate of a VES depends on three factors: n, m, and k where the n is the number of ports on a switch, the m is the expanding speed and the k is the number of layers. However, the factor m yields the optimal effect. Hence, a VES can be designed with factor m to achieve the expected expanding rate and server scale based on the initial planning objectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.