Dysbiotic oral microbiota has been associated with multiple sclerosis. However, the role and mechanism of oral microbiota in the development of multiple sclerosis are still elusive. Here, we demonstrated that ligature-induced periodontitis (LIP) aggravated experimental autoimmune encephalomyelitis (EAE) in mice, and this was likely dependent on the expansion of T helper 17 (Th17) cells. LIP increased the splenic richness of Enterobacter sp., which was able to induce the expansion of splenic Th17 cells and aggravate EAE in mice. LIP also led to enrichment of Erysipelotrichaceae sp. in the gut and increased Th17 cells in the large intestinal lamina propria of EAE mice. Fecal microbiota transplantation from EAE mice with LIP also promoted EAE symptoms. In conclusion, periodontitis exacerbates EAE, likely through ectopic colonization of oral pathobionts and expansion of Th17 cells.
In this study, an active microvibration isolation system is developed for precision space payload. Vibrational environment affects the performance and reliability of measuring instruments. To improve the measurement accuracy of the precision space payload, an active vibration isolation system based on eight vibration isolation modules, which are applied for microvibration isolation on the satellite, is designed. A vibration suppression control strategy for multiple degrees of freedom is studied. A hybrid control method involving a feedback and a feedforward controller based on a nonlinear tracking differentiator and an nth-order weak integrator, respectively, was adopted to optimize the suppression effect of microvibration. As a result, the microvibration of the order of mg can be reduced to the order of μg through the active control of modules. Research experiment results show that the root cumulative power spectral density of the systemic sensitive frequency band in the range of 0.5–200 Hz, i.e., microvibration frequency band in the optical reference cavity, has been reduced to in the order of μg in three directions, which satisfied the requirements of aerospace engineering.
The optical reference cavity in an ultrastable laser is sensitive to vibrations; the microvibrations in a space platform affect the accuracy and stability of such lasers. In this study, an active vibration isolation controller is proposed to reduce the effect of vibrations on variations in the cavity length and improve the frequency stability of ultrastable lasers. Based on the decentralized control strategy, we designed a state-differential feedback controller with a linear quadratic regulator (LQR) and added a disturbance observer (DOB) to estimate the source noise. Experiments were conducted using an active vibration isolation system; the results verified the feasibility and performance of the designed controller. The accelerations along the axis (Z-, X-, Y-) directions were suppressed in the low-frequency band within 200 Hz, and the root-cumulative power spectral densities (PSDs) declined to 1.17 × 10−5, 7.16 × 10−6, and 8.76 × 10−6 g. This comprehensive vibration met the requirements of an ultrastable laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.