Noninvasive transcranial electric stimulation is increasingly being used as an advantageous therapy alternative that may activate deep tissues while avoiding drug side-effects. However, not only is there limited evidence for activation of deep tissues by transcranial electric stimulation, its evoked human sensation is understudied and often dismissed as a placebo or secondary effect. By systematically characterizing the human sensation evoked by transcranial alternating-current stimulation, we observed not only stimulus frequency and electrode position dependencies specific for auditory and visual sensation but also a broader presence of somatic sensation ranging from touch and vibration to pain and pressure. We found generally monotonic input-output functions at suprathreshold levels, and often multiple types of sensation occurring simultaneously in response to the same electric stimulation. We further used a recording circuit embedded in a cochlear implant to directly and objectively measure the amount of transcranial electric stimulation reaching the auditory nerve, a deep intercranial target located in the densest bone of the skull. We found an optimal configuration using an ear canal electrode and low-frequency (<300 Hz) sinusoids that delivered maximally ~1% of the transcranial current to the auditory nerve, which was sufficient to produce sound sensation even in deafened ears. Our results suggest that frequency resonance due to neuronal intrinsic electric properties need to be explored for targeted deep brain stimulation and novel brain-computer interfaces.
The present TFEA and micro-fabrication method represent a step closer towards an automated process replacing the labor-intensive and expensive manual assembly of electrode arrays in most neural prostheses including the cochlear implant.
Whole-body three-dimensional surface imaging (3DSI) offers the ability to monitor morphologic changes in multiple areas without the need to individually scan every anatomical region of interest. One area of application is the digital quantification of leg volume. Certain types of morphology do not permit complete circumferential scan of the leg surface. A workflow capable of precisely estimating the missing data is therefore required. We thus aimed to describe and apply a novel workflow to collect bilateral leg volume measurements from whole-body 3D surface scans regardless of leg morphology and to assess workflow precision. For each study participant, whole-body 3DSI was conducted twice successively in a single session with subject repositioning between scans. Paired samples of bilateral leg volume were calculated from the 3D surface data, with workflow variations for complete and limited leg surface visibility. Workflow precision was assessed by calculating the relative percent differences between repeated leg volumes. A total of 82 subjects were included in this study. The mean relative differences between paired left and right leg volumes were 0.73 ± 0.62% and 0.82 ± 0.65%. The workflow variations for completely and partially visible leg surfaces yielded similarly low values. The workflow examined in this study provides a precise method to digitally monitor leg volume regardless of leg morphology. It could aid in objectively comparing medical treatment options of the leg in a clinical setting. Whole-body scans acquired using the described 3DSI routine may allow simultaneous assessment of other changes in body morphology after further validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.