In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC), that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.
Modern technological advances allow for the study of systems with additional synthetic dimensions. Higher-order topological insulators in topological states of matters have been pursued in lower physical dimensions by exploiting synthetic dimensions with phase transitions. While synthetic dimensions can be rendered in the photonics and cold atomic gases, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuous fashion. Here, we formulate the theoretical principles and manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D) dynamic topological pumpings. In particular, the higher-order topological edge-bulk-edge and corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating first and second Chern numbers and physically demonstrate robustness against the geometrical imperfections. Synthetic dimensions could provide a powerful way for acoustic topological wave steering and open up a platform to explore any continuous orbit in higher-order topological matter in dimensions four and higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.