Transport activities and citizen mobility have a deep impact on enlarged smart cities. By analyzing Big Data streams generated through Internet of Things (IoT) devices, this paper aims to show the efficiency of using IoT analytics, as an agile optimization input for solving real-time problems in smart cities. IoT analytics has become the main core of large-scale Internet applications, however, its utilization in optimization approaches for real-time configuration and dynamic conditions of a smart city has been less discussed. The challenging research topic is how to reach real-time IoT analytics for use in optimization approaches. In this paper, we consider integrating IoT analytics into agile optimization problems. A realistic waste collection problem is modeled as a dynamic team orienteering problem with mandatory visits. Open data repositories from smart cities are used for extracting the IoT analytics to achieve maximum advantage under the city environment condition. Our developed methodology allows us to process real-time information gathered from IoT systems in order to optimize the vehicle routing decision under dynamic changes of the traffic environments. A series of computational experiments is provided in order to illustrate our approach and discuss its effectiveness. In these experiments, a traditional static approach is compared against a dynamic one. In the former, the solution is calculated only once at the beginning, while in the latter, the solution is re-calculated periodically as new data are obtained. The results of the experiments clearly show that our proposed dynamic approach outperforms the static one in terms of rewards.
The popularity of blockchain technology stems largely from its association with cryptocurrencies, but its potential applications extend beyond this. Fungible tokens, which are interchangeable, can facilitate value transactions, while smart contracts using non-fungible tokens enable the exchange of digital assets. Utilizing blockchain technology, tokenized platforms can create virtual markets that operate without the need for a central authority. In principle, blockchain technology provides these markets with a high degree of security, trustworthiness, and dependability. This article surveys recent developments in these areas, including examples of architectures, designs, challenges, and best practices (case studies) for the design and implementation of tokenized platforms for exchanging digital assets.
In the context of increasing complexity in manufacturing and logistic systems, the combination of optimization and simulation can be considered a versatile tool for supporting managerial decision-making. An informed storage location assignment policy is key for improving warehouse operations, which play a vital role in the efficiency of supply chains. Traditional approaches in the literature to solve the storage location assignment problem present some limitations, such as excluding the stochastic variability of processes or the interaction among different warehouse activities. This work addresses those limitations by proposing a discrete-event simheuristic framework that ensures robust solutions in the face of real-life warehouse conditions. The approach followed embraces the complexity of the problem by integrating the order sequence and picking route in the solution construction and uses commercial simulation software to reduce the impact of stochastic events on the quality of the solution. The implementation of this type of novel methodology within a warehouse management system can enhance warehouse efficiency without requiring an increase in automation level. The method developed is tested under a number of computational experiments that show its convenience and point toward future lines of research.
Portal del coneixement obert de la UPC http://upcommons.upc.edu/e-prints Aquesta és una còpia de la versió author's final draft d'una comunicació del congrés Winter Simulation Conference 2021. URL d'aquest document a UPCommons E-prints:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.