Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Here, we identify a cDNA encoding a novel mucin protein, shown previously to be up-regulated in IgAN patients, from a human kidney cDNA library. This protein contains a mucin tandem repeat of 19 amino acids consisting of many threonine, serine, and proline residues and likely to be extensively O-glycosylated; thus, this gene was classified in the mucin family and named MUC20. The human MUC20 gene contains at least four exons and is localized close to MUC4 on chromosome 3q29. We found variations in repeat numbers in the mucin tandem domain, suggesting polymorphism of this region. Northern blot and reverse transcription-PCR analyses revealed that human MUC20 mRNA was expressed most highly in kidney and moderately in placenta, colon, lung, prostate, and liver. Immunohistochemical analysis of human kidney revealed that MUC20 protein was localized in the proximal tubules. Immunoblotting analysis of MUC20 proteins produced in Madin-Darby canine kidney and HEK293 cells indicated the localization of MUC20 protein in a membrane fraction and extensive posttranslational modification. Immunoelectron microscopy of MUC20-producing Madin-Darby canine kidney cells demonstrated that MUC20 protein was localized on the plasma membrane. Expression of MUC20 mRNA in a human kidney cell line was up-regulated by tumor necrosis factor-␣, phorbol 12-myristate 13-acetate, or lipopolysaccharide. Two species of MUC20 mRNA (hMUC20-L and hMUC20-S), resulting from alternative transcription, were identified in human tissue, whereas only one variant was observed in mouse tissues. Mouse MUC20 mRNA was expressed in the epithelial cells of proximal tubules, and the expression increased dramatically with the progression of lupus nephritis in the kidney of MRL/MpJ-lpr/lpr mice.Moreover, the expression of mouse MUC20 was augmented in renal tissues acutely injured by cisplatin or unilateral ureteral obstruction. These characteristics suggest that the production of MUC20 is correlated with development and progression of IgAN and other renal injuries.
Our results indicate that podocyte-expressed MIF could induce an injury of podocytes themselves, thereby accelerating the progression of glomerulosclerosis and leading to end-stage renal failure.
SummaryEnhanced production of macrophage migration inhibitory factor (MIF) is recognized in patients with inflammatory bowel disease (IBD) and mice with experimental colitis; however, the precise molecular function of MIF in colitis is not fully understood. To further investigate this matter, we examined the pathological features of MIF transgenic mice with dextran sulphate sodium (DSS)-induced colitis. We generated transgenic mice carrying a murine MIF cDNA driven by a cytomegalovirus enhancer and a b b b b -actin/b b b b -globin promoter. Mice were orally administered 1-4% DSS in drinking water for 7 days. Clinical disease activity, survival and histological features were evaluated. The level of myeloperoxidase (MPO) activity in the colon tissue was measured to assess neutrophil infiltration. The level of corticosterone in the serum was measured by enzyme linked-immunosorbent assay (ELISA). MIF mRNA and protein were markedly up-regulated in the colon and serum obtained from MIF transgenic mice. The severity of the colitis induced by 1% DSS treatment was markedly higher in MIF transgenic mice than in wild-type mice. We also found that MPO activity was significantly higher in MIF transgenic mice than wild-type mice in response to DSS stimulation. Interestingly, the corticosterone level remained unchanged in MIF transgenic mice. MIF enhances DSS-induced colitis, in part via neutrophil accumulation and inhibition of glucocorticoid bioactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.