BATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The major xenon isotopes released from BaTek are also produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide if a specific measurement result could have originated from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84 × 10(13) Bq of (133)Xe. Concentrations of (133)Xe in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88 × 10(13) Bq. The same optimization process yielded a release estimate of 1.70 × 10(13) Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10% of each other. Unpublished production data and the release estimate from June 2013 yield a rough annual release estimate of 8 × 10(14) Bq of (133)Xe in 2014. These multiple lines of evidence cross-validate the stack release estimates and the release estimates based on atmospheric samplers.
The concept of defense in depth is the mainstay of nuclear energy technology to overcome potential environmental disasters from its power plants. The engineering approach dominates this concept, thus placing the environment as a receiving factor for the success or failure of the approach. The question of the reasons for this situation arises together with the question of how environmental approaches can play a role in the concept. An ethnographic study on the development and application of this concept was carried out through a content analysis of the literature. The results of the study indicate that there is an assumption that the prevention of environmental radioactive disasters will be achieved by reducing the frequency of severe accidents, the environment will be protected if humans are safe and there is not enough environmental and pollution approach to be applied to the concept. This study recommends the need for further studies on the capacity of the environment to accept radioactive contaminants and measures the suitability of nuclear power plants with their environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.