Signaling positioning technology provides a new opportunity to understand an individual’s travel characteristics. In recent studies, the travel parameters obtained are mainly macroscopic travel information. However, extracting detailed trip chain information, such as the trip mode and mode-switching time point, remains a challenge. Furthermore, because of the iterative development of wireless networks, existing communication operators usually store different frequencies and accuracy (2G/3G and 4G) of signaling data simultaneously, making the refined identification of travel information more difficult. Therefore, this paper proposes a new method. First, we use the shortest distance algorithm to match the signaling data with the road network. Second, a wavelet transform modulus maximum (WTMM) algorithm is proposed to divide multimodal travel trajectories into single-mode trip segments; thus, spatiotemporal information related to mode transfer can be obtained. Finally, an unsupervised fuzzy kernel c-means clustering (FKCM) algorithm is proposed to distinguish travel modes. As comparison data, smartphone GPS and travel log data are also collected to analyze the detection result and improve the method. The identification errors of mode-switching time points at different frequencies are all less than 360 s. The average correct rate of traffic mode identification for 2G is 65.1%, and the average correct rate of traffic mode identification for 3G is 78.2%. 4G intensive cellular positioning data has a significantly better recognition effect than low-frequency data; the average trip mode detection accuracy reaches 89.6%, and the mode-switching time point detection errors are within 300 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.