This paper proposes a novel region-based active contour model in the level set formulation for medical image segmentation. We define a unified fitting energy framework based on Gaussian probability distributions to obtain the maximum a posteriori probability (MAP) estimation. The energy term consists of a global energy term to characterize the fitting of global Gaussian distribution according to the intensities inside and outside the evolving curve, as well as a local energy term to characterize the fitting of local Gaussian distribution based on the local intensity information. In the resulting contour evolution that minimizes the associated energy, the global energy term accelerates the evolution of the evolving curve far away from the objects, while the local energy term guides the evolving curve near the objects to stop on the boundaries. In addition, a weighting function between the local energy term and the global energy term is proposed by using the local and global variances information, which enables the model to select the weights adaptively in segmenting images with intensity inhomogeneity. Extensive experiments on both synthetic and real medical images are provided to evaluate our method, show significant improvements on both efficiency and accuracy, as compared with the popular methods.
Deep convolutional neural network has been applied for single image superresolution problem and demonstrated state-of-the-art quality. This paper presents several prior information that could be utilized during the training process of the deep convolutional neural network. The first type of prior focuses on edges and texture restoration in the output, and the second type of prior utilizes multiple upscaling factors to consider the structure recurrence across different scales. As demonstrated by our experimental results, the proposed framework could significantly accelerate the training speed for more than ten times and at the same time lead to better image quality. The generated super-resolution image achieves visually sharper and more pleasant restoration as well as superior objectively evaluation results compared to state-of-the-art methods.
The performance of person re-identification (Re-ID) has been seriously effected by the large cross-view appearance variations caused by mutual occlusions and background clutters. Hence learning a feature representation that can adaptively emphasize the foreground persons becomes very critical to solve the person Re-ID problem. In this paper, we propose a simple yet effective foreground attentive neural network (FANN) to learn a discriminative feature representation for person Re-ID, which can adaptively enhance the positive side of foreground and weaken the negative side of background. Specifically, a novel foreground attentive subnetwork is designed to drive the network's attention, in which a decoder network is used to reconstruct the binary mask by using a novel local regression loss function, and an encoder network is regularized by the decoder network to focus its attention on the foreground persons. The resulting feature maps of encoder network are further fed into the body part subnetwork and feature fusion subnetwork to learn discriminative features. Besides, a novel symmetric triplet loss function is introduced to supervise feature learning, in which the intra-class distance is minimized and the inter-class distance is maximized in each triplet unit, simultaneously. Training our FANN in a multi-task learning framework, a discriminative feature representation can be learned to find out the matched reference to each probe among various candidates in the gallery. Extensive experimental results on several public benchmark datasets are evaluated, which have shown clear improvements of our method over the state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.