Three-dimensional (3D) printing provides a new approach of fabricating implantable products because it permits a flexible manner to extrude complex and customized shapes of the tissue scaffolds. Compared with other printable biomaterials, the polyurethane elastomer has several merits, including excellent mechanical properties and good biocompatibility. However, some intrinsic behavior, especially its high melting point and slow rate of degradation, hampered its application in 3D printed tissue engineering. Herein, we developed a 3D printable amino acid modified biodegradable waterborne polyurethane (WBPU) using a water-based green chemistry process. The flexibility of this material endows better compliance with tissue during implantation and prevents high modulus transplants from scratching surrounding tissues. The histocompatibility experiments show that the WBPU induces no apparent acute rejection or inflammation in vivo. We successfully fabricated a highly flexible WBPU scaffold by deposition 3D printing technology at a low temperature (50°C ~ 70 °C), and the printed products could support the adhesion and proliferation of chondrocytes and fibroblasts. The printed blocks possessed controllable degradability due to the different amounts of hydrophilic chain extender and did not cause accumulation of acidic products. In addition, we demonstrated that our WBPU is highly applicable for implantable tissue engineering because there is no cytotoxicity during its degradation. Taken together, we envision that this printable WBPU can be used as an alternative biomaterial for tissue engineering with low temperature printing, biodegradability, and compatibility.
Bacterial cellulose (BC) is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilization of collagen on BC. This study describes a facile dialdehyde BC/collagen peptide nanocomposite. BC was oxidized into dialdehyde bacterial cellulose (DBC) by regioselective oxidation, and then composited with collagen peptide (Col-p) via covalent bonds to form Schiff’s base type compounds, which was demonstrated by the results of microstructures, contact angle, Col-p content, and peptide-binding ratio. The peptide-binding ratio was further affected by the degree of oxidation, pH value, and zeta potential. In vitro desorption measurement of Col-p suggested a controlled release mechanism of the nanocomposite. Cell tests indicated that the prepared DBC/Col-p composite was bioactive and suitable for cell adhesion and attachment. This work demonstrates that the DBC/Col-p composite is a promising material for tissue engineering and regeneration.
Extracellular matrix (ECM) components have become important candidate materials for use as neural scaffolds for neural tissue engineering. In the current study, we prepared cauda equina-derived ECM materials for the production of scaffolds. Natural porcine cauda equina was decellularized using Triton X-100 and sodium deoxycholate, shattered physically, and made into a suspension by differential centrifugation. The decellularization procedure resulted in the removal of >94% of the nuclear material and preserved the extracellular collagen and sulfated glycosaminoglycan. Immunofluorescent staining confirmed the presence of collagen type I, laminin, and fibronectin in the ECM. The cauda equine-derived ECM was blended with poly(l-lactide-co-glycolide) (PLGA) to fabricate nanostructured scaffolds using electrospinning. The incorporation of the ECM increased the hydrophilicity of the scaffolds. Fourier transform infrared spectroscopy and multiphoton-induced autofluorescence images showed the presence of the ECM in the scaffolds. ECM/PLGA scaffolds were beneficial for the survival of Schwann cells compared with scaffolds consisting of PLGA alone, and the aligned fibers could regulate cell morphologic features by modulating cellular orientation. Axons in the dorsal root ganglia explants extended to a greater extent along ECM/PLGA compared with PLGA-alone fibers. The cauda equina ECM might be a promising material for forming scaffolds for use in neural tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.