Background
A universally applicable approach that provides standard HALE measurements for different regions has yet to be developed because of the difficulties of health information collection. In this study, we developed a natural language processing (NLP) based HALE estimation approach by using individual-level electronic medical records (EMRs), which made it possible to calculate HALE timely in different temporal or spatial granularities.
Methods
We performed diagnostic concept extraction and normalisation on 13•99 million EMRs with NLP to estimate the prevalence of 254 diseases in WHO Global Burden of Disease Study (GBD). Then, we calculated HALE in Chongqing, 2017, by using the life table technique and Sullivan's method, and analysed the contribution of diseases to the expected years “lost” due to disability (DLE).
Findings
Our method identified a life expectancy at birth (LE
0
) of 77•9 years and health-adjusted life expectancy at birth (HALE
0
) of 71•7 years for the general Chongqing population of 2017. In particular, the male LE
0
and HALE
0
were 76•3 years and 68•9 years, respectively, while the female LE
0
and HALE
0
were 80•0 years and 74•4 years, respectively. Cerebrovascular diseases, cancers, and injuries were the top three deterioration factors, which reduced HALE by 2•67, 2•15, and 1•19 years, respectively.
Interpretation
The results demonstrated the feasibility and effectiveness of EMRs-based HALE estimation. Moreover, the method allowed for a potentially transferable framework that facilitated a more convenient comparison of cross-sectional and longitudinal studies on HALE between regions. In summary, this study provided insightful solutions to the global ageing and health problems that the world is facing.
Funding
(2018YFC2000400).
Knowledge about the local adaptation and response of forest tree populations to the climate is important for assessing the impact of climate change and developing adaptive genetic resource management strategies. However, such information is not available for most plant species. Here, based on 69 provenances tested at 19 common garden experimental sites, we developed a universal response function (URF) for tree height at seven years of age for the important and wide-spread native Chinese tree species Platycladus orientalis (L.) Franco. URF was recently used to predict the potential growth response of a population originating from any climate and growing in any climate conditions. The developed model integrated both genetic and environmental effects, and explained 55% of the total variation in tree height observed among provenances and test sites in China. We found that local provenances performed better than non-local counterparts in habitats located in central, eastern, and southwestern China, showing the evidence of local adaptation as compared to other regions. In contrast, non-local provenances outperformed local ones in peripheral areas in northern and northwestern China, suggesting an adaptational lag in these areas. Future projections suggest that the suitable habitat areas of P. orientalis would expand by 15%–39% and shift northward by 0.8–3 degrees in latitude; however, the projected tree height of this species would decline by 4%–8% if local provenances were used. If optimal provenances were used, tree height growth could be improved by 13%–15%, along with 59%–71% suitable habitat expansion. Thus, assisted migration with properly selected seed sources would be effective in avoiding maladaptation in new plantations under a changing climate for P. orientalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.