Mechanisms that regulate silk protein synthesis provide the basis for silkworm variety breeding and silk gland bioreactor optimization. Here, using the pooling sequencing-based methodology, we deciphered the genetic basis for the varied silk production in different silkworm strains. We identified 8 SNPs, with 6 on chromosome 11 and 1 each on chromosomes 22 and 23, that were linked with silk production. After conducting an association analysis between gene expression pattern, silk gland development and cocoon shell weight (CSW), BMGN011620 was found to be regulating silk production. BMGN011620 encodes the 60S ribosomal protein, L18, which is an indispensable component of the 60S ribosomal subunit; therefore we named it BmRPL18. Moreover, the clustering of linked SNPs on chromosome 11 and the analysis of differentially expressed genes reported in previous Omics studies indicated that the genes regulating silk protein synthesis may exhibit a clustering distribution in the silkworm genome. These results collectively advance our understanding of the regulation of silk production, including the role of ribosomal proteins and the clustered distribution of genes involved in silk protein synthesis.
Holometabolous insects have distinct larval, pupal, and adult stages. The pupal stage is typically immobile and can be subject to predation, but cocoon offers pupal protection for many insect species. The cocoon provides a space in which the pupa to adult metamorphosis occurs. It also protects the pupa from weather, predators and parasitoids. Silk protein is a precursor of the silk used in cocoon construction. We used the silkworm as a model species to identify genes affecting silk protein synthesis and cocoon construction. We used quantitative genetic analysis to demonstrate that β-1 , 4-N-acetylglucosaminidase 1 ( BmGlcNase1 ) is associated with synthesis of sericin, the main composite of cocoon. BmGlcNase1 has an expression pattern coupled with silk gland development and cocoon shell weight (CSW) variation, and CSW is an index of the ability to synthesize silk protein. Up-regulated expression of BmGlcNase1 increased sericin content by 13.9% and 22.5% while down-regulation reduced sericin content by 41.2% and 27.3% in the cocoons of females and males, respectively. Genomic sequencing revealed that sequence variation upstream of the BmGlcNase1 transcriptional start site (TSS) is associated with the expression of BmGlcNase1 and CSW. Selective pressure analysis showed that GlcNase1 was differentially selected in insects with and without cocoons ( ω 1 = 0.044 vs. ω 2 = 0.154). This indicates that this gene has a conserved function in the cocooning process of insects. BmGlcNase1 appears to be involved in sericin synthesis and silkworm cocooning.
Very long chain fatty acids (VLCFAs), such as sphingolipids, are components of cellular lipids, which are essential for cell proliferation. Mutations in the genes that encode proteins participating in VLCFA biosynthesis may cause inherited diseases, such as macular degeneration. Elongases of very long chain fatty acid (ELOVL) are enzymes that are involved in the biosynthesis of VLCFAs. Here, a total of 13 ELOVL genes, distributed across three chromosomes, were identified in the silkworm genome; all the ELOVL members contain a distinct ELO domain and a conserved HXXHH motif. Phylogenetic reconstruction was performed to analyze the evolutionary relationships among different species and to predict gene functions. The 13 ELOVL genes were assigned to the ELOVL3/6, ELOVL1/7, and ELOVL4 clades. Microarray and semiquantitative PCR analyses indicated that these genes are differentially expressed among various tissues, in turn suggesting functional divergence in the growth and development of each tissue. Further investigation showed that the expression level of the BGIBMGA000424 gene is significantly negatively correlated with the cocoon-shell weight among different silkworm strains. Taken together, the present study is the first comprehensive analysis of ELOVL genes in silkworm, and the results may serve as a foundation for further analysis of the physiological functions of ELOVL genes in silkworm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.