BackgroundSmall supernumerary marker chromosomes (sSMCs) are common structurally abnormal chromosomes that occur in 0.288% of cases of mental retardation. Isodicentric 15 (idic(15)) is common in sSMCs and usually leads to a rare chromosome disorder with distinctive clinical phenotypes, including early central hypotonia, developmental delay, epilepsy, and autistic behavior. It was previously shown that the partial tetrasomy 15q and partial hexasomy 15q syndromes are usually caused by one and two extra idic(15), respectively. Karyotypes containing a mosaic partial octosomy 15q resulting from three extra idic(15) have rarely been reported.Case presentationTwo patients with profound intellectual impairment, development delay and hyperpigmentation were recruited for this study. The phenotype was relatively more severe in patient 1 than in patient 2. Conventional cytogenetic analysis of peripheral blood obtained from patients 1 and 2 revealed rare mosaic karyotypes containing sSMCs, i.e., mos 49,XX,+mar × 3[83]/48,XX,+mar × 2[7]/46,XX[10] and mos 48,XX,+mar × 2[72]/47,XX,+mar[28], respectively. The results of analyses of copy number variation (CNV) and fluorescence in situ hybridization (FISH) analyses, showed that the sSMCs were found to be idic(15) involving the Prader-Willi/Angelman Syndrome Critical Region (PWACR) genes and the P gene, with duplication sizes of 6.3 Mb and 9.7 Mb, respectively. DNA fingerprinting analysis of patient 1 showed a maternal origin for the idic(15). Both patients had mosaic idic(15) karyotypes: patient 1 had cells with a 15q partial octosomy (83%), and patient 2 had cells with a 15q partial hexasomy (72%).ConclusionsWe detected two rare mosaic idic(15) karyotypes that were associated with congenital abnormalities, including a rare mosaic octosomy of 15q11-q13. Our cases further validate the notion that the phenotypic severity is correlated with the level of mosaicism and the dosage effect of related genes in the proximal 15q.
Aims: Fibrodysplasia ossificans progressiva (FOP) is a rare and severely disabling autosomal dominant disorder characterized by congenital malformations of the great toes and progressive postnatal heterotopic ossification. A point mutation in the activin receptor IA (ACVR1) gene is the cause of FOP. Most of the reported cases of FOP are sporadic and caused by de novo mutations; however, some rare cases can also result from parental germline mosaicism associated with a greater risk of recurrence in successive pregnancies. Therefore, once the pathogenic mutation has been identified in the proband, it is relative cheaper and important to perform prenatal diagnostic tests to exclude the recurrence risk of FOP in subsequent pregnancies. In this study, we first investigated the mutation in the ACVR1 gene in a Chinese FOP patient and then performed prenatal tests to exclude the risk of recurrence in the patient's unborn sibling. Methods: A couple visited our clinic with their 4-year-old son, who was clinically diagnosed with FOP, for genetic counseling. Genetic testing was performed by amplifying all the nine exons of the ACVR1 gene using the conventional polymerase chain reaction. Further, DNA sequencing was used to determine the mutation based on the results of a mutation screening using denaturing high-performance liquid chromatography. Subsequently, a prenatal test was performed using the same technique as that used for the proband. Results: A recurrent single nucleotide mutation c.617 G>A (R206H) of the ACVR1 gene was identified in the patient; however, both the parents had a normal ACVR1 gene. Prenatal tests showed that the fetus did not carry the pathogenic mutation. Conclusion: The results confirmed that a recurrent single nucleotide mutation c.617 G>A (R206H) was the genetic cause of FOP and explored the utility of prenatal testing in excluding the risk of recurrence in the successive pregnancy.
BackgroundPreimplantation genetic diagnosis (PGD) is a powerful tool for preventing the transmission of Mendelian disorders from generation to generation. However, PGD only can identify monogenically inherited diseases, but not other potential monogenic pathologies. We aimed to use PGD to deliver a healthy baby without congenital FVII deficiency or other common Mendelian diseases in a couple in which both individuals carried a deleterious mutation in the F7 gene.MethodsAfter both members of the couple were confirmed to be carriers of the F7 gene mutation by Sanger sequencing, expanded carrier screening (ECS) for 623 recessive inheritance diseases was performed to detect pathological mutations in other genes. PGD and preimplantational genetic screening (PGS) were employed to exclude monogenic disorders and aneuploidy for their embryos.ResultsECS using targeted capture sequencing technology revealed that the couple carried the heterozygous disease-causative mutations c.3659C > T (p.Thr1220Ile) and c.3209G > A (p.Arg1070Gln) in the CFTR gene. After PGD and PGS, one of their embryos that was free of congenital FVII deficiency, cystic fibrosis (CF) and aneuploidy was transferred, resulting in the birth of a healthy 3200 g male infant.ConclusionWe successfully implemented PGD for congenital FVII deficiency and PGD after ECS to exclude CF for the first time to the best of our knowledge. Our work significantly improved the reproductive outcome for the couple and provides a clear example of the use of ECS combined with PGD to avoid the delivery of offspring affected not only by identified monogenically inherited diseases but also by other potential monogenic pathologies and aneuploidy.
<b><i>Introduction:</i></b> The sequencing-based noninvasive prenatal testing (NIPT) has been successfully integrated into clinical practice and facilitated the early detection of fetal chromosomal anomalies. However, a comprehensive reference material to evaluate and quality control NIPT services from different NIPT providers remains unavailable. <b><i>Methods:</i></b> In this study, we established a set of NIPT reference material consisting of 192 simulated samples. Most of the potential factors influencing the accuracy of NIPT, such as fetal fraction, mosaicism, and interfering substances, were included in the reference material. We compared the performance of chromosomal abnormalities detection on 3 widely used sequencers (NextSeq 500, BGISEQ-500, and Ion Proton) based on the reference material. <b><i>Results:</i></b> All 3 sequencers provided highly accurate and reliable results to samples with ≥3.5% fetal fractions and high percentage of mosaicism. <b><i>Conclusions:</i></b> The established reference material can serve as a universal standard quality control for the current and new-coming NIPT providers based on various sequencers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.