To eliminate the occurrence of false positives and improve the accuracy of measurement results in the process of environmental detection, a single-switch dual-mode nanosensing method should be developed for real-time and in situ detection. Herein, we constructed a colorimetric and fluorescent dual-mode optical nanosensor for accurate detection of As(III) in water. The nanosensor consisted of trithiocyanuric acid modified gold nanoparticles (TMT-Au NPs) and amino-functionalized carbon dots (NCDs). When TMT-Au NPs were injected into the NCDs solutions, the fluorescence of NCDs was weakened due to the overlap of the UV−vis absorption peak of TMT-Au NPs and emission peak of NCDs based on an internal filtering effect. With the addition of As(III), the coordination of As(III) with sulfhydryl groups of TMT-Au NPs occurred, causing the aggregation of TMT-Au NPs for colorimetric detection based on local surface plasmon resonance with a limit of detection (LOD) of 0.87 ppb. Meanwhile, the fluorescence of the NCDs was recovered during the aggregation process of TMT-Au NPs for fluorescence detection with an LOD as low as 0.66 ppb. The reported dual-mode optical nanosensor will be widely used in the field of environmental water detection.
Thermal interface materials (TIMs) have become more and more necessary in miniaturized modern devices, so the exploration of highly thermally conductive TIMs with flexibility and elasticity are of great significance....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.