A major challenge is the development of multifunctional metal-organic frameworks (MOFs), wherein magnetic and electronic functionality can be controlled simultaneously. Herein, we rationally construct two 3D MOFs by introducing the redox active ligand tetra(4-pyridyl)tetrathiafulvalene (TTF(py) ) and spin-crossover Fe centers. The materials exhibit redox activity, in addition to thermally and photo-induced spin crossover (SCO). A crystal-to-crystal transformation induced by I doping has also been observed and the resulting intercalated structure determined. The conductivity could be significantly enhanced (up to 3 orders of magnitude) by modulating the electronic state of the framework via oxidative doping; SCO behavior was also modified and the photo-magnetic behavior was switched off. This work provides a new strategy to tune the spin state and conductivity of framework materials through guest-induced redox-state switching.
BackgroundSince the conception of enhanced recovery after surgery protocols, tubeless strategies have become popular. Herein, we introduce a previously unreported alternative air‐extraction strategy for patients who have undergone thoracoscopic wedge resection and explore its feasibility and safety.MethodsBetween January 2015 and June 2017, 264 consecutive patients underwent thoracoscopic wedge resection with different drainage strategies. Patients were divided according to the postoperative drainage strategies used: routine chest tube drainage (RT group), complete omission of chest tube drainage (OT group), and prophylactic air‐extraction catheter insertion procedure (PC group). Using the propensity score matching method, clinical parameters and objective operative qualities were compared among the three groups.ResultsOptimal 1:1 matching was used to form pairs of RT (n =36) and PC (n =36) groups and balance baseline characteristics among the three groups. The incidence rates of pneumothorax were 5.6% (2/36), 9.8% (5/51), and 19.4% (7/36) in the RT, OT, and PC groups, respectively (P = 0.07). Chest tube reinsertion incidence for postoperative pneumothorax was 19.4% (1/7) in the PC group and 60% (3/5) in the OT group. Other postoperative complications were comparable among these groups.ConclusionsThe prophylactic air‐extraction strategy may be an alternative procedure for selected patients. Remedial air extraction may reduce the occurrence of chest tube reinsertion for pneumothorax patients, but further investigation is required.
A highly sensitive curvature sensor based on asymmetrical twin core fiber (TCF) and multimode fiber (MMF) is proposed and experimentally demonstrated. By applying the coupled-mode theory and equivalent refractive index model, we theoretically analyze the uncoupled feature of the TCF and the relationship between peak wavelength and the curvature. Two segments of MMF used as beam splitter and combiner are embedded on the two ends of the TCF, and the extinction ratio of the comb transmission spectrum is about 15 dB. The experimental result shows that the curvature sensitivity of the sensor can be achieved as high as 103.35 nm/m −1 ranging from 0.24 m −1 to 0.6 m −1 , and the strain sensitivity is up to-4.01 pm/µε in the range from 0 µε to 1400 µε. The simultaneous detection of the curvature and strain can be realized. The temperature sensitivity is 0.431 nm/ • C in the range from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.