The difference between vacuum energy of quantum fields in Minkowski space and in Friedmann-Robterson-Walker universe might be related to the observed dark energy. The vacuum energy of the Veneziano ghost field introduced to solve the U (1) A problem in QCD is of the form, H + O(H 2 ). Based on this, we study the dynamical evolution of a phenomenological dark energy model whose energy density is of the form αH + βH 2 . In this model, the universe approaches to a de Sitter phase at late times. We fit the model with current observational data including SnIa, BAO, CMB, BBN, Hubble parameter and growth rate of matter perturbation. It shows that the universe begins to accelerate at redshift z ∼ 0.75 and this model is consistent with current data. In particular, this model fits the data of growth factor well as the ΛCDM model.
Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent z on the holographic superconductor models are studied in some detail, including s-wave and p-wave models. Working in the probe limit, we calculate the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with a general z. For both the s-wave and p-wave models in the black hole backgrounds, as z increases, the phase transition becomes difficult and the conductivity is suppressed. For the Lifshitz soliton background, when z increases, the critical chemical potential increases in both the s-wave model (with a fixed mass of the scalar field) and p-wave model. For the p-wave model in both the Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when z increases. In all cases, we find that the critical exponent of the condensation is always 1/2, independent of z and spacetime dimension. The analytical results from the Sturm-Liouville variational method uphold the numerical calculations. The implications of these results are discussed.
The microwave spectrum of methyl isobutyl ketone was recorded using a molecular beam Fourier transform microwave spectrometer and analyzed to determine the rotational constants A = 4.7517(17) GHz, B = 1.496115(79) GHz, C = 1.324364(39) GHz, and centrifugal distortion constants. A-E splittings from 250 MHz up to 1 GHz were observed due to internal rotation of the acetyl methyl group with a potential barrier of 250.3(19) cm -1 . 59 A and 57 E species lines were fitted to experimental accuracy. The experimental rotational constants were compared with results from quantum chemical calculations to validate the molecular structure.
The molecular beam Fourier-transform microwave spectrum of pinacolone (methyl tert-butyl ketone) has been measured in several regions between 2 and 40 GHz. Fits of the assigned spectrum using several computer programs based on different models for treating torsion-rotation interaction lead to the conclusion that no existing program correctly captures the internal dynamics of this molecule. Quantum chemical calculations at the MP2/6-311++G(d,p) level of theory indicate that this molecule does not have a plane of symmetry at equilibrium, and that internal rotation of the light methyl group induces a large oscillatory motion of the heavy tert-butyl group from one side of the Cs configuration to the other. This effect has been modeledfor J = 0 levels by a relatively simple two-top torsional Hamiltonian, where the magnitudes of the strong coupling terms between the tops are determined directly from the ab initio two-dimensional potential surface. A plot of the resultant 0A, 0E, 1E, 1A torsional levels on the same scale as a one-dimensional potential curve along the zig-zag path connecting the six (unequally spaced) minima bears a striking resemblance to the 1:2:1 splitting pattern of the A, E, E, B levels of an internal rotation problem with a six-fold barrier. It seems likely that rotational transitions within the 1E and 1A torsional levels are the cause of the roughly 50% of the spectrum that remains unassigned after all predicted transitions within the 0A and 0E torsional levels are removed. However, a much more complete measurement campaign and some new torsion-rotation theory will be needed to verify this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.