Ventilatory pump failure is a common cause of death for patients with neuromuscular diseases. The vital capacity plateau value (VCPLAT) is an important indicator to judge the status of ventilatory pump failure for patients with congenital myopathy, Duchenne muscular dystrophy and spinal muscular atrophy. Due to the complex relationship between VCPLAT and the patient’s own condition, it is difficult to predict the VCPLAT for pediatric disease from a medical perspective. We established a VCPLAT prediction model based on data mining and machine learning. We first performed the correlation analysis and recursive feature elimination with cross-validation (RFECV) to provide high-quality feature combinations. Based on this, the Light Gradient Boosting Machine (LightGBM) algorithm was to establish a prediction model with powerful performance. Finally, we verified the validity and superiority of the proposed method via comparison with other prediction models in similar works. After 10-fold cross-validation, the proposed prediction method had the best performance and its explained variance score (EVS), mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), median absolute error (MedAE) and R2 were 0.949, 0.028, 0.002, 0.045, 0.015 and 0.948, respectively. It also performed well on test datasets. Therefore, it can accurately and effectively predict the VCPLAT, thereby determining the severity of the condition to provide auxiliary decision-making for doctors in clinical diagnosis and treatment.
For patients with hypertension, serious complications, such as myocardial infarction, a common cause of heart failure, occurs in the late stage of hypertension. Hypertension outcomes can lead to complications, including death. Hypertension outcomes threaten patients’ lives and need to be predicted. In our research, we reviewed the hypertension medical data from a tertiary-grade A class hospital in Beijing, and established a hypertension outcome prediction model with the machine learning theory. We first proposed a gain sequence forward tabu search feature selection (GSFTS-FS) method, which can search the optimal combination of medical variables that affect hypertension outcomes. Based on this, the XGBoost algorithm established a prediction model because of its good stability. We verified the proposed method by comparing other commonly used models in similar works. The proposed GSFTS-FS improved the performance by about 10%. The proposed prediction method has the best performance and its AUC value, accuracy, F1 value, and recall of 10-fold cross-validation were 0.96. 0.95, 0.88, and 0.82, respectively. It also performed well on test datasets with 0.92, 0.94, 0.87, and 0.80 for AUC, accuracy, F1, and recall, respectively. Therefore, the XGBoost with GSFTS-FS can accurately and effectively predict the occurrence of outcomes for patients with hypertension, and can provide guidance for doctors in clinical diagnoses and medical decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.