Defect engineering is widely applied in transition metal dichalcogenides (TMDs) to achieve electrical, optical, magnetic, and catalytic regulation. Vacancies, regarded as a type of extremely delicate defect, are acknowledged to be effective and flexible in general catalytic modulation. However, the influence of vacancy states in addition to concentration on catalysis still remains vague. Thus, via high throughput calculations, the optimized sulfur vacancy (S-vacancy) state in terms of both concentration and distribution is initially figured out among a series of MoS2 models for the hydrogen evolution reaction (HER). In order to realize it, a facile and mild H2O2 chemical etching strategy is implemented to introduce homogeneously distributed single S-vacancies onto the MoS2 nanosheet surface. By systematic tuning of the etching duration, etching temperature, and etching solution concentration, comprehensive modulation of the S-vacancy state is achieved. The optimal HER performance reaches a Tafel slope of 48 mV dec–1 and an overpotential of 131 mV at a current density of 10 mA cm–2, indicating the superiority of single S-vacancies over agglomerate S-vacancies. This is ascribed to the more effective surface electronic structure engineering as well as the boosted electrical transport properties. By bridging the gap, to some extent, between precise design from theory and practical modulation in experiments, the proposed strategy extends defect engineering to a more sophisticated level to further unlock the potential of catalytic performance enhancement.
Organic light‐emitting diodes (OLEDs) have come a long way ever since their first introduction in 1987 at Eastman Kodak. Today, OLEDs are especially valued in the display and lighting industry for their promising features. As one of the research fields that equally inspires and drives development in academia and industry, OLED device technology has continuously evolved over more than 30 years. OLED devices have come forward based on three generations of emitter materials relying on fluorescence (first generation), phosphorescence (second generation), and thermally activated delayed fluorescence (third generation). Furthermore, research in academia and industry toward the fourth generation of OLEDs is in progress. Excerpts from the history of green, orange‐red, and blue OLED emitter development on the side of academia and milestones achieved by key players in the industry are included in this report.
With the booming development of electronic information technology, the problems caused by electromagnetic (EMs) waves have gradually become serious, and EM wave absorption materials are playing an essential role in daily life. Carbon nanostructures stand out for their unique structures and properties compared with the other absorption materials. Graphene, carbon nanotubes, and other special carbon nanostructures have become especially significant as EM wave absorption materials in the high‐frequency range. Moreover, various nanocomposites based on carbon nanostructures and other lossy materials can be modified as high‐performance absorption materials. Here, the EM wave absorption theories of carbon nanostructures are introduced and recent advances of carbon nanostructures for high‐frequency EM wave absorption are summarized. Meanwhile, the shortcomings, challenges, and prospects of carbon nanostructures for high‐frequency EM wave absorption are presented. Carbon nanostructures are typical EM wave absorption materials being lightweight and having broadband properties. Carbon nanostructures and related nanocomposites represent the developing orientation of high‐performance EM wave absorption materials.
Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom−2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure−performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure−performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure−performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.
The matching of charge transport layer and photoactive layer is critical in solar energy conversion devices, especially for planar perovskite solar cells based on the SnO2 electron‐transfer layer (ETL) owing to its unmatched photogenerated electron and hole extraction rates. Graphdiyne (GDY) with multi‐roles has been incorporated to maximize the matching between SnO2 and perovskite regarding electron extraction rate optimization and interface engineering towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer has fourfold improved electron mobility due to freshly formed C−O σ bond and more facilitated band alignment. The enhanced hydrophobicity inhibits heterogeneous perovskite nucleation, contributing to a high‐quality film with diminished grain boundaries and lower defect density. Also, the interfacial passivation of Pb−I anti‐site defects has been demonstrated via GDY introduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.