Characterization of the rupture risk factors for small intracranial aneurysms (SIAs, ≤5 mm) is clinically valuable. The present study aims to identify image-based morphological parameters and anatomical locations associated with the rupture status of SIAs. Two hundred and sixty-three patients with single SIAs (128 ruptured, 135 unruptured) were included, and six morphological parameters, including size, aspect ratio (AR), size ratio (SR), height–width ratio (H/W), flow angle (FA) and aneurysm width–parent artery diameter ratio, and the aneurysm locations were evaluated using three-dimensional geometry, and were used to identify a correlation with aneurysm rupture. Statistically significant differences were observed between ruptured and unruptured groups for AR, SR, H/W, FA, and aneurysm locations, from univariate analyses. Logistic regression analysis further revealed that AR (p = 0.034), SR (p = 0.004), H/W (p = 0.003), and FA (p < 0.001) had the strongest independent correlation with ruptured SIAs after adjustment for age, gender and other clinical risk factors. A future study on a larger SIA cohort need to establish to what extent the AR, SR, H/W and FA increase the risk of rupture in patients with unruptured SIAs in terms of absolute risks.
Monosodium glutamate induces excitotoxicity in the central nervous system through hyperactivation of both ionotropic and metabotropic glutamate receptors, which leads to neuronal cell death. In this study, we investigated the neuroprotective effects of naringenin on excitotoxicity induced by glutamate in primary hippocampal neurons of neonatal mice. The expression levels of apoptosis-inducing proteins and as well as ischemic factors were observed by Western blot analysis. Immunocytochemistry and morphometric analysis of hippocampal cells with or without glutamate and naringenin treatment were performed. We observed that naringenin regulated Erk1/2 and Akt phosphorylation and reduced the demise of dendrites due to glutamate exposure in cultured hippocampal neurons. Furthermore, naringenin induced the brain-derived neurotrophic factor and other neuroprotective cytokines, and markedly improved the survival rates of the neurons 24 h following glutamate exposure. The observed results suggest that the naturally occurring bioflavonoid (naringenin) exerts neuroprotective effects via highly specific molecular targets in neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.