Artículo de publicación ISIBackground Whether rapid lowering of elevated blood pressure would improve the outcome in patients with intracerebral hemorrhage is not known. Methods We randomly assigned 2839 patients who had had a spontaneous intracerebral hemorrhage within the previous 6 hours and who had elevated systolic blood pressure to receive intensive treatment to lower their blood pressure (with a target systolic level of <140 mm Hg within 1 hour) or guideline-recommended treatment (with a target systolic level of <180 mm Hg) with the use of agents of the physician’s choosing. The primary outcome was death or major disability, which was defined as a score of 3 to 6 on the modified Rankin scale (in which a score of 0 indicates no symptoms, a score of 5 indicates severe disability, and a score of 6 indicates death) at 90 days. A prespecified ordinal analysis of the modified Rankin score was also performed. The rate of serious adverse events was compared between the two groups. Results Among the 2794 participants for whom the primary outcome could be determined, 719 of 1382 participants (52.0%) receiving intensive treatment, as compared with 785 of 1412 (55.6%) receiving guideline-recommended treatment, had a primary outcome event (odds ratio with intensive treatment, 0.87; 95% confidence interval [CI], 0.75 to 1.01; P = 0.06). The ordinal analysis showed significantly lower modified Rankin scores with intensive treatment (odds ratio for greater disability, 0.87; 95% CI, 0.77 to 1.00; P = 0.04). Mortality was 11.9% in the group receiving intensive treatment and 12.0% in the group receiving guideline-recommended treatment. Nonfatal serious adverse events occurred in 23.3% and 23.6% of the patients in the two groups, respectively. Conclusions In patients with intracerebral hemorrhage, intensive lowering of blood pressure did not result in a significant reduction in the rate of the primary outcome of death or severe disability. An ordinal analysis of modified Rankin scores indicated improved functional outcomes with intensive lowering of blood pressure
A newly discovered mechanism of cell death, programmed necrosis (necroptosis), combines features of both necrosis and apoptosis. Necroptosis is tightly modulated by a series of characteristic signaling pathways. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting protein 1 (RIP1), which mediates the activation of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) two critical downstream mediators of necroptosis. Recently, different cytokines have been found participating in this mechanism of cell death. Necroptosis has been proposed as an important component to the pathophysiology of heart disease such as vascular atherosclerosis, ischemia-reperfusion injury, myocardial infarction and cardiac remodeling. Targeting necroptosis signaling pathways may provide therapeutic benefit in the treatment of cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.