We present a novel pulsed-train near-IR diode laser system with real-time temperature monitoring of the laser-heated cancer cell mixed in gold nanorod solution. Near-IR diode laser at 808 nm matching the gold nanorod absorption peak (with an aspect ratio about 4.0) was used in this study. Both surface and volume temperatures were measured and kept above 43°C, the temperature for cancer cells destruction. The irradiation time needed in our pulsed-train system with higher laser fluence for killing the cancel cells is about 1–3 minutes, much shorter than conventional methods (5–10 minutes). Cell viabilities in gold nanorod mixed and controlled solutions are studied by green fluorescence.
In this study, zinc oxide films were deposited by an ion-beam sputter deposition in various oxygen partial pressures at room temperature. The films changed the structures from amorphous to polycrystalline with increasing the oxygen partial pressure ( O 2 ). The optimal O 2 was found at 1.2 × 10 −4 Torr because the film prepared at the oxygen partial pressure had the lowest resistivity and the highest transparence in the visible light region. The lowest resistivity results from a great number of oxygen vacancy sites formed on the polycrystalline surface as exposed to the atmosphere. Moreover, the film has the highest XRD peak intensity, smallest FWHM diffraction peak, smallest -spacing, and smallest biaxial stress.
We have grown highly crystalline β-FeSe type iron chalcogenide nanowires (NWs) by annealing thin film that is prepared by a pulsed laser deposition method. Three kinds of NWs with compositions of Fe 0.8 Se, Fe 0.88 Se 0.32 Te 0.68 and Fe 0.88 Te 0.91 S 0.09 have been prepared and carefully characterized by a high-resolution transmission electron microscope (HRTEM). The NWs reveal ideal tetragonal structure with crystal growth along the [100] direction. Energy dispersive spectroscopy (EDS) studies and HRTEM images show the NWs to have good compositional uniformity, except for the existence of a thin layer of oxide on the surface. No superconducting transition was observed in the FeSe x NWs, which is possibly caused by Fe deficiency. The other two types of NWs show relatively higher and sharper superconducting transitions than their bulk counterparts. Interestingly, a resistive transition tail is observed in the NWs with diameter smaller than 100 nm, which might originate from a phase slip process in the quasi-one-dimensional system. The success in producing these high quality NWs provides a new avenue for better understanding the origin of superconductivity in β-FeSe type iron chalcogenides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.