A facile method had been applied to introduce hydrophobic properties to cellulose materials by incorporation of polyurethane acrylate (PUA) prepolymers into the porous structured cellulose matrix through dip-coating; then, PUA prepolymers were cured around interconnected cellulose fibers under UV light, encapsulating a cellulose matrix with a hydrophobic polymer shell. The characterization of the composite films confirmed the success of the heterogeneous modification, and the chemical structure of the cellulose matrix was preserved. The composite films integrated the merits of cellulose and PUA resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties and an obvious reduction in the water uptake and the permeability toward water vapor gas at different relative humidity was also observed. The transmittance of the composite films at 550 nm was about 85%. The thermal and mechanical properties of the composite films were improved when compared with that of PUA resin. The obtained composite based on cellulose and UV curing technology was a good choice for the development of biomass materials with modified surface properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.