Programmable metasurfaces allow dynamic and real‐time control of electromagnetic (EM) waves in subwavelength resolution, holding extraordinary potentials to establish meta‐systems. Achieving independent and real‐time controls of orthogonally‐polarized EM waves via the programmable metasurface is attractive for many applications, but remains considerably challenging. Here, a polarization‐controlled dual‐programmable metasurface (PDPM) with modular control circuits is proposed, which enables a dibit encoding capability in modifying the phase profiles of x‐ and y‐polarized waves individually. The constructed extended interface circuit is able to extend the number of control interfaces from a field programmable gate array by orders of magnitude and also possesses memory function, which enhance hugely the rewritability, scalability, reliability, and stability of PDPM. As a proof‐of‐concept, a wave‐based exclusive‐OR logic gate platform for spin control of circularly‐polarized waves, a fixed‐frequency wide‐angle dual‐beam scanning system, and a dual‐polarized shared‐aperture antenna are demonstrated using a single PDPM. The proposed PDPM opens up avenues for realizing more advanced and integrated multifunctional devices and systems that have two independent polarization‐controlled signal channels, which may find many applications in future‐oriented intelligent communication, imaging, and computing technologies.
Signal conversion plays an important role in many applications such as communication, sensing, and imaging. Realizing signal conversion between optical and microwave frequencies is a crucial step to construct hybrid communication systems that combine both optical and microwave wireless technologies to achieve better features, which are highly desirable in the future wireless communications. However, such a signal conversion process typically requires a complicated relay to perform multiple operations, which will consume additional hardware/time/energy resources. Here, we report a light-to-microwave transmitter based on the time-varying and programmable metasurface integrated with a high-speed photoelectric detection circuit into a hybrid. Such a transmitter can convert a light intensity signal to two microwave binary frequency shift keying signals by using the dispersion characteristics of the metasurface to implement the frequency division multiplexing. To illustrate the metasurface-based transmitter, a hybrid wireless communication system that allows dual-channel data transmissions in a light-to-microwave link is demonstrated, and the experimental results show that two different videos can be transmitted and received simultaneously and independently. Our metasurface-enabled signal conversion solution may enrich the functionalities of metasurfaces, and could also stimulate new information-oriented applications.
Background In unresectable hepatocellular carcinoma (HCC), methods to predict patients at increased risk of progression are required. Purpose To investigate the feasibility of radiomics model in predicting early progression of unresectable HCC after transcatheter arterial chemoembolization (TACE) therapy using preoperative multiparametric magnetic resonance imaging (MP‐MRI). Study Type Retrospective. Population A total of 84 patients with BCLC B stage HCC from one medical center. According to the modified response evaluation criteria in solid tumors, patients who progressed at 6 months after TACE therapy were assigned as the progressive disease (PD) group (n = 32). Patients whose MRI was performed on four devices were divided into a training cohort (n = 67). Patients whose MRI was performed on other than the previous four devices were used as the testing set (n = 17). Field Strength/Sequence 3.0T, 1.5T axial T2‐weighted imaging (T2WI), diffusion‐weighted imaging (DWI, b = 0, 500 s/mm2), and apparent diffusion coefficient (ADC) Assessment PD was confirmed via imaging studies with MRI. Risk factors, including age, alpha fetoprotein (AFP), size, and radiomic‐related features of PD were assessed. In addition, the discrimination ability of each radiomics signature was tested on an independent testing set. Statistical Tests The area under the receiver‐operator characteristic (ROC) curve (AUC) was used to evaluate the predictive accuracy of the radiomic signature in both the training and testing sets. The results indicated that the MP‐MRI model achieved the greatest benefit. Results In the testing set, the model based on DWI features presented an AUC of (b = 0, 0.786; b = 500, 0.729), followed by T2WI features (0.729) and ADC (0.714). The AUC of the MP‐MRI signature was increased to 0.800 compared to any single MRI signature. The multivariate logistic analysis identified the radiomics signature as independent parameters of PD, while clinical information such as age, AFP, size, etc., had no significance in the PD group. Data Conclusion Preoperative MP‐MRI has the potential to predict the outcome of TACE therapy for unresectable HCC. In addition, these image features may be complementary to the current staging systems of HCC patients. Level of Evidence 2. Technical Efficacy Stage 3. J. Magn. Reson. Imaging 2020;52:1083–1090.
BackgroundRecently, various dynamically expressed lncRNAs are known to play critical roles in cancer progression. Small nucleolar RNA host genes (SNHG), a stable cytoplasmic lncRNA, which have been widely reported to act as an oncogene in non-small cell lung cancer (NSCLC). As an important member of SNHG, SNHG8 have been suggested to over-expressed in several cancer disease, while the biological function in NSCLC remains unclear.PurposeHere we investigated the biological function and underlying mechanism of SNHG8 in human NSCLC.Patients and methodsThe relationship between SNHG8 expression and clinicopathologic characteristic in NSCLC patients were observed from January 2014 to December 2014 in 120 NSCLC patients. The expression of SNHG8 were analyzed by qRT-PCR assay in cancer tissues and cells. Cell proliferation ability were detected in NSCLC cells by CCK-8 assay. Flow cytometric analysis were performed to detected the cell apoptosis and cell cycle. Luciferase assay and Western blot assay were performed on NSCLC cells to detected the underlying mechanism of SNHG8 in NSCLC. Moreover, Tumor xenografts in nude mice were performed to detected the in vivo function of SNHG8.ResultsSNHG8 was over-expressed in NSCLC tissues and cells. Patients with high SNHG8 expression have poorer overall survival (OS) and progression-free survival (PFS) than the patients with low SNHG8 expression. SNHG8 knockdown inhibited NSCLC cell proliferation in vitro and in vivo, arrested cell cycle in the G0/G1 phase via targeting miR-542-3p/CCND1/ CDK6, and induced cell apoptosis via activation of Caspase-3.ConclusionSNHG8 negatively regulated miR-542-3p in NSCLC progression by regulating downstream effectors including CCND1 and CDK6. SNHG8 showed great potential for the application in the treatment of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.