Since the advent of digital coding metamaterials, a new paradigm is unfolded to sample, compute and program electromagnetic waves in real time with one physical configuration. However, one inconvenient truth is that actively tunable building blocks such as diodes, varactors, and biased lines must be individually controlled by a computer‐assisted field programmable gate array and physically connected by electrical wires to the power suppliers. This issue becomes more formidable when more elements are needed for more advanced and multitasked metadevices and metasystems. Here, a remote‐mode metasurface is proposed and realized that is addressed and tuned by illuminating light. By tuning the intensity of light‐emitting diode light, a digital coding metasurface composed of such light‐addressable elements enables dynamically reconfigurable radiation beams in a control‐circuitry‐free way. Experimental demonstration is validated at microwave frequencies. The proposed dynamical remote‐tuning metasurface paves a way for constructing unprecedented digital metasurfaces in a noncontact remote fashion.
Programmable metasurfaces allow dynamic and real‐time control of electromagnetic (EM) waves in subwavelength resolution, holding extraordinary potentials to establish meta‐systems. Achieving independent and real‐time controls of orthogonally‐polarized EM waves via the programmable metasurface is attractive for many applications, but remains considerably challenging. Here, a polarization‐controlled dual‐programmable metasurface (PDPM) with modular control circuits is proposed, which enables a dibit encoding capability in modifying the phase profiles of x‐ and y‐polarized waves individually. The constructed extended interface circuit is able to extend the number of control interfaces from a field programmable gate array by orders of magnitude and also possesses memory function, which enhance hugely the rewritability, scalability, reliability, and stability of PDPM. As a proof‐of‐concept, a wave‐based exclusive‐OR logic gate platform for spin control of circularly‐polarized waves, a fixed‐frequency wide‐angle dual‐beam scanning system, and a dual‐polarized shared‐aperture antenna are demonstrated using a single PDPM. The proposed PDPM opens up avenues for realizing more advanced and integrated multifunctional devices and systems that have two independent polarization‐controlled signal channels, which may find many applications in future‐oriented intelligent communication, imaging, and computing technologies.
Signal conversion plays an important role in many applications such as communication, sensing, and imaging. Realizing signal conversion between optical and microwave frequencies is a crucial step to construct hybrid communication systems that combine both optical and microwave wireless technologies to achieve better features, which are highly desirable in the future wireless communications. However, such a signal conversion process typically requires a complicated relay to perform multiple operations, which will consume additional hardware/time/energy resources. Here, we report a light-to-microwave transmitter based on the time-varying and programmable metasurface integrated with a high-speed photoelectric detection circuit into a hybrid. Such a transmitter can convert a light intensity signal to two microwave binary frequency shift keying signals by using the dispersion characteristics of the metasurface to implement the frequency division multiplexing. To illustrate the metasurface-based transmitter, a hybrid wireless communication system that allows dual-channel data transmissions in a light-to-microwave link is demonstrated, and the experimental results show that two different videos can be transmitted and received simultaneously and independently. Our metasurface-enabled signal conversion solution may enrich the functionalities of metasurfaces, and could also stimulate new information-oriented applications.
A great challenge with metasurfaces is tunability for tailoring electromagnetic waves dynamically. Metasurfaces designed digitally, also known as digital coding metasurfaces, provide a low-overhead strategy for constructing controllable or even programmable metasurfaces. However, most reported digital metasurfaces have been single-band ones of the reflection type that have been realized by controlling the phase response of the digital elements. This study reports on a light-controllable and frequency-dependent digital coding metasurface that allows wave transmission to be manipulated more freely and flexibly. By remotely tuning the illumination intensity or shifting the frequency of the incident waves, the transmission response of the designed digital elements can be tuned dynamically. The proposed device is assessed experimentally at microwave frequencies. The presented transmissive digital metasurface offers unprecedented opportunities to produce reconfigurable devices that are controlled in multiple ways with a single design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.