Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.
An electrospray photolithographic patterning (EPP) process that integrates advantages of electrospray (ES) and digital light processing (DLP) for maskless fabrication of 3D porous microstructures is proposed here. First, monodisperse microparticles with controllable particle size produced by ES are deposited on a substrate to form a photoresist layer. Second, DLP exposure of the photoresist layer selectively irradiates the microparticles to form a desired pattern with complexity. Third, the repetitive steps of deposition and exposure enable layer‐by‐layer construction of a green part with embedded 3D patterns of irradiation. Finally, the irradiated microparticles are removed from the green part to form 3D particulate microstructures. With this process, freeform patterning of multiple micro‐electro‐mechanical system elements with controlled porosity, involving microfluidic channels, stamps, and power‐free pressure sensors is successfully demonstrated. The EPP process has a great technical potential for freeform and high‐throughput fabrication of multi‐layered porous microstructures in versatile applications such as micromixers, porous stamping, and microsensors.
The high-P content in convert slag limits its recycling in the steelmaking process. The P could be removed out of the slag as gas when the convert slag is reduced by reductants, such as carbon.Through the experiments and thermodynamic calculations, one of the main dephosphorization products is determined to be P 2 as the converter slag being reduced by C. In the experiments, the reduction driving force of P 2 O 5 is greater than that of FeO; while the actual Gibbs free energy of P 2 O 5 is lower than that of FeO at a high temperature in the atmosphere of flowing N 2 . The dephosphorization of converter slag conforms to the interface chemical reaction model, and a model was established to describe the dephosphorization process in this study. The results indicate the apparent activation energy of the dephosphorization reaction is 165.78 kJ mol −1 and the dephosphorization reaction is controlled by the mass transfer of reactants in the slag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.