Wheel braking devices is some of the most widely used landing deceleration devices in modern aircraft. Jet pipe pressure servo valves are widely used in large aircraft wheel brake control systems because of their high anti-pollution ability, high sensitivity and fast dynamic response. However, most brake systems suffer vibration phenomena during the braking process. The pressure servo valve is an important part of the hydraulic brake system, and also an important factor affecting the vibration of the system. In order to solve the vibration problem in the brake system this paper present a two-stage brake pressure servo valve design. We place feedback channels at both ends of the main spool to stabilize the output pressure. In addition, modeling, simulation and experimental verifications are carried out. Firstly, the principle and structure of the pressure servo valve are described. An accurate mathematical model of the two-stage brake pressure servo valve and the testing system is established. Then a simulation analysis is carried out. Finally, a two-stage brake pressure servo valve testing experimental platform system is built for experimental verification. The experimental results show that the mathematical model of the two-stage brake pressure servo valve and the test system established in this paper have high accuracy, and the designed servo valve structure can restrain vibrations. The above research results provide a useful theoretical reference for performance optimization, stability analysis and valve body structure improvement of brake pressure servo valves.
This paper takes the position control performance of pump-controlled hydraulic presses as the research object. The control methods are designed respectively for the two motion stages of rapid descent and slow descent of hydraulic presses in order to improve the control performance of the system. First of all, the accuracy model of the pump-controlled hydraulic presses position servo system (the pump-controlled hydraulic presses position servo system, which is called PCHPS) and its MATLAB/Simulink simulation platform are established. Based on the theoretical analysis and experimental data, the interference factors affecting the tracking accuracy and positioning accuracy of the PCHPS are analyzed. Then, an adaptive integral robust control (the adaptive integral robust control, which is called AIRC) for PCHPS is designed to reduce the influence of nonlinear factors on the system, and the effectiveness of the controller is verified by simulation. Finally, the position control experiment of PCHPS is designed, and the experimental results show that the AIRC can effectively reduce nonlinear factors such as unknown interference in the slow-down stage of the system. The positioning accuracy is raised to within 0.008 mm, which improves the process level of the hydraulic presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.