To evaluate whether uterine injury caused by hepatitis E virus (HEV) infection is responsible for adverse pregnancy outcomes. HEV-infected female BALB/c mice were coupled with healthy male BALB/c mice at 0, 7, 14, 21, and 91 dpi to explore the uterine injury caused by HEV infection. Mice were euthanized after 10 days of copulation, and uteruses were collected for HEV RNA and antigen detection and histopathological analysis. Inflammatory responses; apoptosis; and estrogen receptor ɑ (ER-ɑ), endomethal antibody (ERAb), cytokeratin-7 (CK7), vimentin (VIM), and vascular endothelial growth factor (VEGF) expression levels were evaluated. After 10 days of copulation, miscarriage and nonpregnancy, as well as enlarged uteruses filled with inflammatory cytokines, were found in HEV-infected mice. HEV RNA and antigens were detected in the sera and uteruses of HEV-infected mice. Significant endometrial thickness (EMT) thinning, severe inflammatory responses, and aggravated apoptosis in the uteruses of HEV-infected mice that experienced miscarriage might contribute to adverse pregnancy outcomes. Furthermore, significantly suppressed ER-ɑ expression and increased ERAb, CK7, VIM, and VEGF expression levels were found in the uteruses of HEV-infected mice that had miscarried. However, uterine damage recovered after complete HEV clearance, and impaired fertility was improved. EMT injury, severe inflammatory responses, and aggravated apoptosis in the uterus caused by HEV infection are responsible for poor pregnancy outcomes.
Hepatitis E virus (HEV) infection is the most common cause of acute viral hepatitis worldwide. However, host-HEV interactions have yet to be fully understood. Zincfinger antiviral protein (ZAP) is a novel interferon (IFN)-stimulated gene product that inhibits a variety of viruses in synergy with IFNβ. To evaluate the role of ZAP in HEV infection, its expressions in HEV-infected patients and in cell cultures were measured.We report a significant inhibition of ZAP expression in patients with HEV genotype four acute infection. The expression of ZAP in the HEV life cycle was monitored in cultures of HEV-infected cells. Results indicated that the ZAP level decreased significantly after HEV infection. ZAP over-expression inhibited HEV replication, whereas its knockdown by RNA interference significantly increased HEV RNA. These suggest that ZAP serves as an antiviral in HEV infection. Moreover, silencing ZAP decreased IFN regulatory factor 3 (IRF3) phosphorylation in HEV-infected cells treated with poly(I:C), indicating that ZAP synergizes with IFNβ. In conclusion, ZAP is an important anti-HEV host factor and in synergy with IFNβ, inhibits HEV replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.