The researches on two-dimensional indoor positioning based on wireless LAN and the location fingerprint methods have become mature, but in the actual indoor positioning situation, users are also concerned about the height where they stand. Due to the expansion of the range of three-dimensional indoor positioning, more features must be needed to describe the location fingerprint. Directly using a machine learning algorithm will result in the reduced ability of classification. To solve this problem, in this paper, a “divide and conquer” strategy is adopted; that is, first through k-medoids algorithm the three-dimensional location space is clustered into a number of service areas, and then a multicategory SVM with less features is created for each service area for further positioning. Our experiment shows that the error distance resolution of the approach with k-medoids algorithm and multicategory SVM is higher than that of the approach only with SVM, and the former can effectively decrease the “crazy prediction.”
Background As the main histological subtype of renal cell carcinoma, clear cell renal cell carcinoma (ccRCC) places a heavy burden on health worldwide. Autophagy-related long non-coding RNAs (ARlncRs) have shown tremendous potential as prognostic signatures in several studies, but the relationship between them and ccRCC still has to be demonstrated. Methods The RNA-sequencing and clinical characteristics of 483 ccRCC patients were downloaded download from the Cancer Genome Atlas and International Cancer Genome Consortium. ARlncRs were determined by Pearson correlation analysis. Univariate and multivariate Cox regression analyses were applied to establish a risk score model. A nomogram was constructed considering independent prognostic factors. The Harrell concordance index calibration curve and the receiver operating characteristic analysis were utilized to evaluate the nomogram. Furthermore, functional enrichment analysis was used for differentially expressed genes between the two groups of high- and low-risk scores. Results A total of 9 SARlncRs were established as a risk score model. The Kaplan–Meier survival curve, principal component analysis, and subgroup analysis showed that low overall survival of patients was associated with high-risk scores. Age, M stage, and risk score were identified as independent prognostic factors to establish a nomogram, whose concordance index in the training cohort, internal validation, and external ICGC cohort was 0.793, 0.671, and 0.668 respectively. The area under the curve for 5-year OS prediction in the training cohort, internal validation, and external ICGC cohort was 0.840, 0.706, and 0.708, respectively. GO analysis and KEGG analysis of DEGs demonstrated that immune- and inflammatory-related pathways are likely to be critically involved in the progress of ccRCC. Conclusions We established and validated a novel ARlncRs prognostic risk model which is valuable as a potential therapeutic target and prognosis indicator for ccRCC. A nomogram including the risk model is a promising clinical tool for outcomes prediction of ccRCC patients and further formulation of individualized strategy.
Background. Renal transplantation can significantly improve the survival rate and quality of life of patients with end-stage renal disease, but the probability of acute rejection (AR) in adult renal transplant recipients is still approximately 12.2%. Machine learning (ML) is superior to traditional statistical methods in various clinical scenarios. However, the current AR model is constructed only through simple difference analysis or a single queue, which cannot guarantee the accuracy of prediction. Therefore, this study identified and validated new gene sets that contribute to the early prediction of AR and the prognosis prediction of patients after renal transplantation by constructing a more accurate AR gene signature through ML technology. Methods. Based on the Gene Expression Omnibus (GEO) database and multiple bioinformatic analyses, we identified differentially expressed genes (DEGs) and built a gene signature via LASSO regression and SVM analysis. Immune cell infiltration and immunocyte association analyses were also conducted. Furthermore, we investigated the relationship between AR genes and graft survival status. Results. Twenty-four DEGs were identified. A 5 gene signature (CPA6, EFNA1, HBM, THEM5, and ZNF683) were obtained by LASSO analysis and SVM analysis, which had a satisfied ability to differentiate AR and NAR in the training cohort, internal validation cohort and external validation cohort. Additionally, ZNF683 was associated with graft survival. Conclusion. A 5 gene signature, particularly ZNF683, provided insight into a precise therapeutic schedule and clinical applications for AR patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.