Reliable and sensitive methods to monitor mercury levels in real samples are highly important for environment protection and human health. Herein, a label-free colorimetric sensor for Hg2+ quantitation using gold nanostar (GNS) has been demonstrated, based on the formation of Au-Hg amalgamate that leads to shape-evolution of the GNS and changes in its absorbance. Addition of ascorbic acid (AA) to GNS solution is important for quantitation of Hg2+, mainly because it can reduce Hg2+ to Hg to enhance amalgamation on the GNSs and stabilize GNSs. In addition to transmission electron microscopy images, the distribution of circular ratios of GNSs in the presence of 2 mM AA and various concentrations of Hg2+ are used to show the morphology changes of the GNSs. Upon increasing the concentration of Hg2+, the average circular ratio of GNSs decreases, proving GNS is approaching to sphere. The morphology change alters the longitudinal localized surface plasmonic resonance (LSPR) absorbance of the GNSs significantly. Under the optimum conditions, our sensor exhibits a dynamic response for Hg2+ in the range of 1–4,000 nM with a detection limit of 0.24 nM. Upon Increasing Hg2+ concentration, the solution color changes from greenish-blue, purple to red, which can be distinguished by the naked eye when the Hg2+ concentration is higher than 250 nM. Owing to having a high surface-to-volume ratio and affinity toward Hg0, the GNS is sensitive and selective (at least 50-fold over tested metal ions like Pb2+) toward Hg2+ in the presence of AA. Practicality of this assay has been validated by the analysis of water samples without conducting tedious sample pretreatment.
Background:
Cancer causes millions of deaths and huge economic losses every year. The currently
practiced methods for cancer therapy have many defects, such as side effects, low curate rate, and discomfort for
patients.
Objective:
Herein, we summarize the applications of gold nanorods (AuNRs) in cancer therapy based on their
photothermal effect-the conversion of light into local heat under irradiation.
Methods:
The recent advances in the synthesis and regulation of AuNRs, and facile surface functionalization
further facilitate their use in cancer treatment. For cancer therapy, AuNRs need to be modified or coated with
biocompatible molecules (e.g. polyethylene glycol) and materials (e.g. silicon) to reduce the cytotoxicity and
increase their biocompatibility, stability, and retention time in the bloodstream. The accumulation of AuNRs in
cancerous cells and tissues is due to the high leakage in tumors or the specific interaction between the cell surface
and functional molecules on AuNRs such as antibodies, aptamers, and receptors.
Results:
AuNRs are employed not only as therapeutics to ablate tumors solely based on the heat produced under
laser that could denature protein and activate the apoptotic pathway, but also as synergistic therapies combined
with photodynamic therapy, chemotherapy, and gene therapy to kill cancer more efficiently. More importantly,
other materials like TiO2, graphene oxide, and silicon, etc. are incorporated on the AuNR surface for multimodal
cancer treatment with high drug loadings and improved cancer-killing efficiency. To highlight their applications
in cancer treatment, examples of therapeutic effects both in vitro and in vivo are presented.
Conclusion:
AuNRs have potential applications for clinical cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.