High‐throughput 16S rRNA and 18S rRNA sequencing were performed to study the changes of soil microbial diversity and community structure under different heavy metal pollution levels in Chengxian lead–zinc mining area, Gansu Province. In this study, we characterized the main physicochemical properties, multiple heavy metal pollution, and microbial community structure of the soil in the tailings. The results show that the soil near the tailings pond was alkaline, barren and the heavy metals were seriously polluted. The microbial diversity and richness of S1 and S2 sites were significantly lower than that of CK2 site (P < 0·05), indicating that the heavy metal pollution could change the physicochemical properties and microbial community structure in soil. Among 97 identified core operating taxa of fungal communities, Ascomycota, Teguta and Basidiomycota were dominant at the phylum level, while among 1523 identified core operating taxa of bacterial communities, Actinomycota was dominant at the phylum level. In addition, the redundancy analysis and Spearman correlation analysis showed that the physicochemical properties and the heavy metal concentration had significant effects on the composition and distribution of soil microbial community. The basic characteristics of soil physicochemical properties, multiple heavy metal pollution and microbial community structure in the tailings were revealed, hoping to provide a basis for ecological rehabilitation of tailings by revealing the variance rule of microbial community diversity in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.