Porcine reproductive and respiratory syndrome virus (PRRSV) is a single-stranded positive-sense RNA virus that can cause devastating reproductive failure and respiratory tract lesions, which has led to serious damage to the swine industry worldwide. Our previous studies have indicated that Tongcheng (TC) pigs, a Chinese local breed, have stronger resistance or tolerance to PRRSV infection than Large White (LW) pigs. This study aims to investigate their host transcriptome differences in porcine alveolar macrophages (PAMs) at 7 days post challenge. Transcriptome profiling of PAMs from PRRSV infected and control pigs of these two breeds were performed using RNA-sequencing. For both breeds, there were 1257 common differentially expressed genes (DEGs) in response to PRRSV infection, involving hepatic fibrosis/hepatic stellate cell activation, phospholipase C, and granulocyte adhesion and diapedesis pathways. For TC pig, 549 specific DEGs were identified, including VAV2, BCL2 and BAX, which were enriched in activation of leukocyte extravasation and suppression of apoptosis. While, 898 specific DEGs were identified in LW pigs, including GNAQ, GNB5, GNG2, CALM4 and RHOQ, which were involved in suppression of Gαq and PI3K-AKT signaling. This study provides an insight into the transcriptomic comparison of resistant and susceptible pigs to PRRSV infection. TC pigs may promote the extravasation and migration of leukocytes to defend against PRRSV infections and suppress apoptosis of the infected macrophages to increase antigen presentation, thereby reducing the lung lesions.
Porcine reproductive and respiratory syndrome (PRRS) is one of the most ruinous diseases in pig production. Our previous work showed that Tongcheng pigs (TC) were less susceptible to PRRS virus (PRRSV) than Large White (LW) pigs. To elucidate the difference in PRRSV resistance between the two breeds, small RNA-seq and ribo-zero RNA-seq were used to identify differentially expressed non-coding RNAs (including miRNAs and lincRNAs) responded to PRRSV in porcine alveolar macrophages (PAMs) from TC and LW pigs. Totally, 250 known mature miRNAs were detected. For LW pigs, there were 44 down-regulated and 67 up-regulated miRNAs in infection group; while for TC pigs, 12 down-regulated and 23 up-regulated miRNAs in TC infection group were identified. The target genes of the common differentially expressed miRNAs (DEmiRNAs) in these two breeds were enriched in immune-related processes, including apoptosis process, inflammatory response, T cell receptor signaling pathway and so on. In addition, 5 shared DEmiRNAs (miR-181, miR-1343, miR-296-3p, miR-199a-3p and miR-34c) were predicted to target PRRSV receptors, of which miR-199a-3p was validated to inhibit the expression of CD151. Interestingly, miR-378 and miR-10a-5p, which could inhibit PRRSV replication, displayed higher expression level in TC control group than that in LW control group. Contrarily, miR-145-5p and miR-328, which were specifically down-regulated in LW pigs, could target inhibitory immunoreceptors and may involve in immunosuppression caused by PRRSV. This indicates that DEmiRNAs are involved in the regulation of the immunosuppression and immune escape of the two breeds. Furthermore, we identified 616 lincRNA transcripts, of which 48 and 30 lincRNAs were differentially expressed in LW and TC pigs, respectively. LincRNA TCONS_00125566 may play an important role in the entire regulatory network, and was predicted to regulate the expression of immune-related genes through binding with miR-1343 competitively. In conclusion, this study provides an important resource for further revealing the interaction between host and virus, which will specify a new direction for anti-PRRSV research.
Porcine reproductive and respiratory syndrome virus (PRRSV) is considered as a significant contributor to porcine reproductive and respiratory syndrome, one of the most economically important diseases for the pig industry worldwide. Emerging evidence indicates that pattern recognition receptors play key roles in recognizing pathogen-associated molecular patterns. In the present study, we investigated the effects of a novel pattern recognition receptor LSM14A in regulating PRRSV replication. Results in Marc-145 cells and porcine alveolar macrophages (PAMs) indicated that overexpression of porcine LSM14A effectively inhibited the replication of PRRSV, and knockdown of LSM14A by siRNA enhanced the replication of PRRSV. Mechanistically, LSM14A up-regulated the activities of IFN-β and ISRE promoters, enhanced the production of IFN-β, RIG-I, and ISGs, and inhibited the production of the inflammatory cytokines of TNF-α and IL-6 mRNA. Additionally, the expression pattern of LSM14A during the infection of PRRSV in Tongcheng and Large White pigs was suppressed by the PRRSV challenge. Taken together, our results suggest that LSM14A is an important PRR that inhibits PPRSV replication by inducing IFN-β signaling and restraining inflammatory responses. Furthermore, the down-regulation of LSM14A by PRRSV might represent an important mechanism by which PRRSV invades the host. Our study sheds light on the possibility of developing a new strategy to control this disease.
Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.