Periodontitis is one of the most common chronic inflammations of the oral cavity, which eventually leads to tooth loss. Betulinic acid (BetA) is an organic acid that has anti-inflammatory effects and is derived from fruits and plants, but its effect on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is still unclear. This study aimed to explore the effect of BetA on the osteogenic differentiation of hPDLSCs and its mechanism. Our results revealed that BetA not only promoted the viability of hPDLSCs but also induced their osteogenic differentiation in a dose-dependent manner. In addition, RNA sequencing was used to screen the differentially expressed genes (DEGs) after hPDLSCs were treated with BetA, and 127 upregulated and 138 downregulated genes were identified. Gene Ontology enrichment analysis showed that DEGs were mainly involved in the response to lithium ions and the positive regulation of macrophage-derived foam cell differentiation. The Kyoto Encyclopedia of Genes and Genomes analysis results revealed that DEGs were enriched in the nuclear factor-κB and interleukin-17 signaling pathways. More importantly, we confirmed that early growth response gene 1 (EGR1), one of the three DEGs involved in bone formation, significantly promoted the expression of osteogenic markers and the mineralization of hPDLSCs. Knockdown of EGR1 obviously limited the effect of BetA on the osteogenic differentiation of hPDLSCs. In conclusion, BetA promoted the osteogenic differentiation of hPDLSCs through upregulating EGR1, and BetA might be a promising candidate in the clinical application of periodontal tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.