The interior corner flow theory is fundamental for liquid management in space. In this paper, the interior corner flow theory is modified by correction of the curvature and shape parameters based on geometry relationship, so that it can be extended to a wide range of applications including different dihedral angles and contact angles. This modification is validated with the data provided by the references using capillary tube and drop tower. Besides, the errors between the theory and experiment value are analyzed for the case of small viscosity and the long-time flow, finding that the main reason causing the error is the transformation of the flow resistance along the flow path. At last, the theory of interior corner flow is applied to the primary design of the Propellant Management Device in satellite tank, and optimum design of the vanes is given in terms of maximum flow rate.interior corner flow, capillary flow, drop tower, propellant management device Citation:Wei Y X, Chen X Q, Huang Y Y. Interior corner flow theory and its application to the satellite propellant management device design.
The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.