A form traveler used in bridge construction has a great influence on the safety of the performance and alignment of bridges. As a cantilever casting segment of a bridge becomes longer and heavier, the traditional form traveler may not meet the strength and stiffness requirements, and there is a risk of collapse. This study has devised a new triangle truss form traveler and investigated the performance based on the Ye-Lang Lake arch bridge in China. Firstly, the numerical models of the form traveler were established to get the strength and stiffness index of the form traveler used for the arch Segment 2. Subsequently, the improvement scheme of the mechanical properties of the form traveler has been proposed. Then the partial refined numerical analysis model of the C-type hook has been established, a finite element model, and a design scheme for improving partial structures of the C-type hook was proposed. Finally, the field load test was carried out to verify the reliability of the new form traveler. The test results show that the improvement of the new form traveler is effective.
Yelang Lake Bridge is the largest cantilevered single-chamber reinforced concrete arch bridge in China, with a net span of 210 m. In this article, an equation for positioning the height of the formwork before pouring of the arch ring segment was derived, which was suitable for the construction control of the long-span reinforced concrete arch bridge such as the Yelang Lake Bridge. The arch ring segment elevation calculation equation was derived under the two typical working conditions that the concrete pouring of the arch ring segment is completed and the buckle cable and anchor cable tensioning are completed. In addition, two typical working conditions of arch ring segment concrete pouring and cable tensioning were evaluated. Then, a new type of cradle and loading test of the cradle, which meet the requirements of the long segment pouring of the arch ring, were introduced. Finally, the measurement deviation during the construction of the arch segment was analyzed. The linear control results of the arch ring showed that the arch ring segment elevation calculation formula could effectively ensure the accuracy of the arch ring segment construction process under the two typical conditions of completion of concrete pouring of the arch ring segment and completion of the buckle and anchor cable tensioning. The maximum deviation is only 3.1 mm. The line shape after the completion of the arch ring construction was in good agreement with the target line shape, and the deviation between the measured value and the target value was only 2.5 cm, which met the engineering requirements.
To investigate the reasonable range of the inclination angle of arch ribs, a spatial finite element method was employed based on a concrete-filled steel tube (CFST) basket-handle through an arch bridge with a span of 360 m. A spatial finite element model was established using Midas/Civil software, which was verified with actual bridge data. The effects of different arch rib inclination angles were investigated under static loads. The structural natural frequencies, linear elastic stability coefficients, internal forces, and displacements were comprehensively considered to determine the reasonable range of the inclination angle. The results show that when the inclination angle ranges between 8° and 10°, the first, third, and sixth natural frequencies of the structure are increased. It effectively improves the lateral and torsional stiffness of the arch ribs while ensuring optimal out-of-plane stability of the arch ribs. Compared with the parallel arch, the stability is improved by 20.2%. The effects of angle variation on displacement and internal force of the arch ribs were not significant. Considering all indicators, the optimal range of the inclination angle for the arch ribs of 300-m-level highway CFST arch bridges is suggested to be 8~10°.
China’s largest high-latitude permafrost distribution zone is in Northeast China. With the intensification of global warming and engineering construction, the carbon stored in permafrost will gradually thaw and be released in the form of methane gas. However, research on the changes in methane concentration and emission sources in this area is still unclear. In this paper, the AIRS (Atmospheric Infrared Sounder) data carried by the Aqua satellite were used to analyze the distribution and change trends in the overall methane concentration in the near-surface troposphere in Northeast China from 2003 to 2022. These data, combined with national meteorological and on-site monitoring data, were used to study the methane emission characteristics and sources in the permafrost area in Northeast China. The results show that the methane concentration in the near-surface troposphere of Northeast China is mainly concentrated in the permafrost area of the Da and Xiao Xing’an Mountains. From 2003 to 2022, the methane concentration in the near-surface troposphere of the permafrost area in Northeast China showed a rapid growth trend, with an average linear trend growth rate of 4.787 ppbv/a. In addition, the methane concentration in the near-surface troposphere of the permafrost area shows a significant bimodal seasonal variation pattern. The first peak appears in summer (June–August), with its maximum value appearing in August, and the second peak appears in winter (December–February), with its maximum value appearing in December. Combined with ground surface methane concentration monitoring, it was found that the maximum annual ground surface methane concentration in degraded permafrost areas occurred in spring, causing the maximum average growth rate in methane concentration, also in spring, in the near-surface troposphere of permafrost areas in Northeast China (with an average value of 6.05 ppbv/a). The growth rate of methane concentration in the southern permafrost degradation zone is higher than that in the northern permafrost stable zone. In addition, with the degradation of permafrost, the geological methane stored deep underground (methane hydrate, coal seam, etc., mainly derived from the accumulation of ancient microbial origin) in the frozen layer will become an important source of near-surface troposphere methane in the permafrost degradation area. Due to the influence of high-permeability channels after permafrost degradation, the release rate of methane gas in spring is faster than predicted, and the growth rate of methane concentration in the near-surface troposphere of permafrost areas can be increased by more than twice. These conclusions can provide a data supplement for the study of the carbon cycle in permafrost areas in Northeast China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.