Background Enzymatic hydrolysis of lignocellulose by fungi is a key step in global carbon cycle and biomass utilization. Cellulolytic enzyme production is tightly controlled at a transcriptional level. Here, we investigated the roles of different histone lysine methylation modifications in regulating cellulolytic enzyme gene expression, as histone lysine methylation is an important process of chromatin regulation associated with gene transcription. Results Po Set1 and Po Set2 in Penicillium oxalicum , orthologs of Set1 and Set2 in budding yeast, were associated with the methylation of histone H3 lysine 4 (H3K4) and lysine 36 (H3K36). Cellulolytic enzyme production was extensively upregulated by the disruption of Po Set2, but was significantly downregulated by the disruption of Po Set1. We revealed that the activation of cellulolytic enzyme genes was accompanied by the increase of H3K4me3 signal, as well as the decrease of H3K36me1 and H3K36me3 signal on specific gene loci. The repression of cellulolytic enzyme genes was accompanied by the absence of global H3K4me1 and H3K4me2. An increase in the H3K4me3 signal by Poset2 disruption was eliminated by the further disruption of Poset1 and accompanied by the repressed cellulolytic enzyme genes. The active or repressed genes were not always associated with transcription factors. Conclusion H3K4 methylation is an active marker of cellulolytic enzyme production, whereas H3K36 methylation is a marker of repression. A crosstalk occurs between H3K36 and H3K4 methylation, and Po Set2 negatively regulates cellulolytic enzyme production by antagonizing the Po Set1-H3K4me3 pathway. The balance of H3K4 and H3K36 methylation is required for the normal transcription of cellulolytic enzyme genes. These results extend our previous understanding that cellulolytic enzyme gene transcription is primarily controlled by transcription factors. Electronic supplementary material The online version of this article (10.1186/s13068-019-1539-z) contains supplementary material, which is available to authorized users.
Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase PoDot1 in Penicillium oxalicum. PoDot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, aspA, aspB, aspC, aspD, and aspE. Tandem affinity purification/mass spectrometry showed that PoDot1 has no direct interaction with transcription machinery, but it affects the expressions of extracellular GH genes extensively. The expression of genes (amy15A, amy13A, cel7A/cbh1, cel61A, chi18A, cel3A/bgl1, xyn10A, cel7B/eg1, cel5B/eg2, and cel6A/cbh2) that encode the top 10 GHs was remarkably downregulated by Podot1 deletion (ΔPodot1). Consistent with the decrease in gene transcription level, the activities of amylases and cellulases were significantly decreased in ΔPodot1 mutants in agar (solid) and fermentation (liquid) media. The repression of GH gene expressions caused by PoDot1 deletion was not mediated by key transcription factors, such as AmyR, ClrB, CreA, and XlnR, but was accompanied by defects in global demethylated H3K79 (H3K79me2) and trimethylated H3K79 (H3K79me3). The impairment of H3K79me2 on specific GH gene loci was observed due to PoDot1 deletion. The results implies that defects of H3K79 methylation is the key reason of the downregulated transcription level of GH-encoding genes and reveals the indispensable role of PoDot1 in extracellular GH biosynthesis.
The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as an excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1‐Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1‐Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1‐Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.