Megalurothrips usitatus (Bagrall) is an important pest of legumes worldwide, causing great economic loss every year. Beauveria brongniartii and Akanthomyces attenuatus have shown considerable pathogenicity against M. usitatus in our previous studies. The medial lethal concentration (LC50) and the sublethal lethal concentration (LC25) of B. brongniartii isolate SB010 against M. usitatus were 8.38 × 105 and 1.73 × 105 conidia mL−1, respectively, whereas those of A. attenuatus isolate SCAUDCL-53 against M. usitatus were 4.37 × 105 and 2.97 × 104 conidia mL−1, respectively. This study reports the transcriptome-based explanation of the stress responses of M. usitatus following the application of B. brongniartii and A. attenuatus. The analysis of the transcriptomic data revealed the expression of 254, 207, 195, and 234 immunity-related unigenes by M. usitatus in response to B. brongniartii LC50 (SB1), B. brongniartii LC25 (SB2), A. attenuatus LC50 (V1), and A. attenuatus LC25 (V2), respectively. The biological function and metabolic pathway analyses showed that these unigenes were mainly related to pattern recognition receptors, information transduction factors, and reaction factors, such as scavenger receptor, cytochrome b5, cuticle protein, lysozyme, and serine protease.
The gut bacterial microbiota of insects plays a crucial role in physiological, metabolic, and innate immune processes. In the current study, the gut bacterial communities of an insecticide-susceptible (IS), and a resistant (IR) population of a major legume pest, Megalurothrips usitatus (Bagnall), were evaluated. The 16S rDNA V3 + V4 regions of M. usitatus infected with Beauveria brongniartii along with the intestinal flora of both populations were sequenced based on a High-throughput sequencing platform. Toxicological bioassays revealed that the IR population exhibited resistance to acetamiprid and B. brongniartii isolate SB010 at levels of 138.0-fold and 55.6-fold higher, respectively, compared to the IS population. Through 16S High-throughput sequencing, the results indicate that both resistant populations, as well as B. brongniartii infestation, reduce the number of species of M. usitatus gut microbes. Using KEGG function prediction, it was found that most intestinal bacteria were involved in various metabolic activities, and the abundance of resistant populations was higher than that of sensitive populations. The bacteria in the gut of M. usitatus are mainly involved in various metabolic activities to achieve the degradation of B. brongniartii. This study provides valuable insights into the interaction between gut bacteria, insecticide resistance, and Beauveria. brongniartii infection in Megalurothrips usitatus, which can help inform future pest control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.