A Pd-catalyzed dehydrogenative phosphorylation of thiols is developed. A variety of thiols dehydrogenatively couple readily with all three kinds of P(O)-H compounds, i.e., H-phosphonates, H-phosphinates, and secondary phosphine oxides, providing a general access to the valuable phosphorothioates including the P-chiral compounds. A plausible mechanism is proposed.
Summary
Molybdenum (Mo) is an essential micronutrient for most living organisms, including humans. Cereals such as rice (Oryza sativa) are the major dietary source of Mo. However, little is known about the genetic basis of the variation in Mo content in rice grain.
We mapped a quantitative trait locus (QTL) qGMo8 that controls Mo accumulation in rice grain by using a recombinant inbred line population and a backcross introgression line population.
We identified a molybdate transporter, OsMOT1;1, as the causal gene for this QTL. OsMOT1;1 exhibits transport activity for molybdate, but not sulfate, when heterogeneously expressed in yeast cells. OsMOT1;1 is mainly expressed in roots and is involved in the uptake and translocation of molybdate under molybdate‐limited condition. Knockdown of OsMOT1;1 results in less Mo being translocated to shoots, lower Mo concentration in grains and higher sensitivity to Mo deficiency. We reveal that the natural variation of Mo concentration in rice grains is attributed to the variable expression of OsMOT1;1 due to sequence variation in its promoter.
Identification of natural allelic variation in OsMOT1;1 may facilitate the development of rice varieties with Mo‐enriched grain for dietary needs and improve Mo nutrition of rice on Mo‐deficient soils.
Recently, the eye drug delivery system has received increasing attention. The in situ ophthalmic gel is a semisolid ophthalmic preparation that can be changed in the eyes immediately after the solution is administered, showing unique advantages as a new drug delivery system. Although there are still some problems to be solved, the in situ ophthalmic gel is a promising drug delivery system to treat ocular diseases, due to its properties in improving the bioavailability, prolonging the retention time of the drug, producing a sustained-release effect, and possessing little toxicity and irritation. In this review, the characteristics, classification, ocular barrier, and route of administration of in situ ophthalmic gel have been introduced in detail for expanding the horizon of nanoscale technologies in the treatment of ocular diseases in the foreseeable future.
The remote acyl group participation in glycosylation was studied by using trichloroacetimidate as the acetyl surrogate. The bridging participation intermediates were systematically trapped, and DFT calculations were applied to explain the results.
BackgroundRiboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), essential cofactors for many metabolic enzymes that catalyze a variety of biochemical reactions. Previously we showed that free flavin (riboflavin, FMN, and FAD) concentrations were decreased in leaves of transgenic Arabidopsis plants expressing a turtle riboflavin-binding protein (RfBP). Here, we report that flavin downregulation by RfBP induces the early flowering phenotype and enhances expression of floral promoting photoperiod genes.ResultsEarly flowering was a serendipitous phenomenon and was prudently characterized as a constant phenotype of RfBP-expressing transgenic Arabidopsis plants in both long days and short days. The phenotype was eliminated when leaf free flavins were brought back to the steady-state levels either by the RfBP gene silencing and consequently nullified production of the RfBP protein, or by external riboflavin feeding treatment. RfBP-induced early flowering was correlated with enhanced expression of floral promoting photoperiod genes and the florigen gene FT in leaves but not related to genes assigned to vernalization, autonomous, and gibberellin pathways, which provide flowering regulation mechanisms alternative to the photoperiod. RfBP-induced early flowering was further correlated with increased expression of the FD gene encoding bZIP transcription factor FD essential for flowering time control and the floral meristem identity gene AP1 in the shoot apex. By contrast, the expression of FT and photoperiod genes in leaves and the expression of FD and AP1 in the shoot apex were no longer enhanced when the RfBP gene was silenced, RfBP protein production canceled, and flavin concentrations were elevated to the steady-state levels inside plant leaves.ConclusionsToken together, our results provide circumstantial evidence that downregulation of leaf flavin content by RfBP induces early flowering and coincident enhancements of genes that promote flowering through the photoperiod pathway.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0237-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.