A Pd-catalyzed dehydrogenative phosphorylation of thiols is developed. A variety of thiols dehydrogenatively couple readily with all three kinds of P(O)-H compounds, i.e., H-phosphonates, H-phosphinates, and secondary phosphine oxides, providing a general access to the valuable phosphorothioates including the P-chiral compounds. A plausible mechanism is proposed.
We carried out a comprehensive study on the generality, scope, limitations, and mechanism of the palladium-catalyzed hydrophosphorylation of alkynes with P(O)-H compounds (i.e., H-phosphonates, H-phosphinates, secondary phosphine oxides, and hypophosphinic acid). For H-phosphonates, Pd/dppp was the best catalyst. Both aromatic and aliphatic alkynes, with a variety of functional groups, were applicable to produce the Markovnikov adducts in high yields with high regioselectivity. Aromatic alkynes showed higher reactivity than aliphatic alkynes. Terminal alkynes reacted faster than internal alkynes. Sterically crowded H-phosphonates disfavored the addition. For H-phosphinates and secondary phosphine oxides, Pd/dppe/PhP(O)OH was the catalyst of choice, which led to highly regioselective formation of the Markovnikov adducts. By using Pd(PPh) as the catalyst, hypophosphinic acid added to terminal alkynes to give the corresponding Markovnikov adducts. Phosphinic acids, phosphonic acid, and its monoester were not applicable to this palladium-catalyzed hydrophosphorylation. Mechanistic studies showed that, with a terminal alkyne, (RO)P(O)H reacted, like a Brønsted acid, to selectively generate the α-alkenylpalladium intermediate via hydropalladation. On the other hand, Ph(RO)P(O)H and PhP(O)H gave a mixture of α- and β-alkenylpalladium complexes. In the presence of PhP(O)OH, hydropalladation with this acid took place first to selectively generate the α-alkenylpalladium intermediate. A subsequent ligand exchange with a P(O)H compound gave the phosphorylpalladium intermediate which produced the Markovnikov adduct via reductive elimination. Related intermediates in the catalytic cycle were isolated and characterized.
Nickel-catalysed P-H/C-CN cross coupling reactions take place efficiently under mild reaction conditions affording the corresponding sp(2)C-P bonds. This transformation provides a convenient method for the preparation of arylphosphines and arylphosphine oxides from the readily available P-H compounds and arylnitriles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.