We present a novel penalty approach for a class of quasi-variational inequalities (QVIs) involving monotone systems and interconnected obstacles. We show that for any given positive switching cost, the solutions of the penalized equations converge monotonically to those of the QVIs. We estimate the penalization errors and are able to deduce that the optimal switching regions are constructed exactly. We further demonstrate that as the switching cost tends to zero, the QVI degenerates into an equation of HJB type, which is approximated by the penalized equation at the same order (up to a log factor) as that for positive switching cost. Numerical experiments on optimal switching problems are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method.
We propose a class of numerical schemes for mixed optimal stopping and control of processes with infinite activity jumps and where the objective is evaluated by a nonlinear expectation. Exploiting an approximation by switching systems, piecewise constant policy timestepping reduces the problem to nonlocal semi-linear equations with different control parameters, uncoupled over individual time steps, which we solve by fully implicit monotone approximations to the controlled diffusion and the nonlocal term, and specifically the Lax-Friedrichs scheme for the nonlinearity in the gradient. We establish a comparison principle for the switching system and demonstrate the convergence of the schemes, which subsequently gives a constructive proof for the existence of a solution to the switching system. Numerical experiments are presented for a recursive utility maximization problem to demonstrate the effectiveness of the new schemes.2010 AMS subject classifications: 65M06, 65M12, 62L15, 93E20, 91G80where t ∈ [0, T ] is the initial time of the control problem, α is an admissible control process and τ is a stopping time, and X α,t,x is a controlled stochastic differential equation (SDE) of the form:The positive constant r denotes the discount rate, and the functions ξ and f represent the terminal payoff and the instantaneous reward function, respectively. Under certain regularity assumptions on the coefficients, one can demonstrate that the value function u satisfies a nonlocal Hamilton-Jacobi-Bellman variational inequality (HJBVI) in the viscosity sense.These results are extended in [15] to a setting where the linear expectation E is replaced by a nonlinear expectation E α,t,x generated by a BSDE with jumps, u(t, x) = sup τ sup α E α,t,x t,τ [ξ(τ, X α,t,x τ )].
This paper proposes penalty schemes for a class of weakly coupled systems of Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVIs) arising from stochastic hybrid control problems of regime-switching models with both continuous and impulse controls. We show that the solutions of the penalized equations converge monotonically to those of the HJBQVIs. We further establish that the schemes are half-order accurate for HJBQVIs with Lipschitz coefficients, and first-order accurate for equations with more regular coefficients. Moreover, we construct the action regions and optimal impulse controls based on the error estimates and the penalized solutions. The penalty schemes and convergence results are then extended to HJBQVIs with possibly negative impulse costs. We also demonstrate the convergence of monotone discretizations of the penalized equations, and establish that policy iteration applied to the discrete equation is monotonically convergent with an arbitrary initial guess in an infinite dimensional setting. Numerical examples for infinite-horizon optimal switching problems are presented to illustrate the effectiveness of the penalty schemes over the conventional direct control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.