The aim of the present study was to measure the expression of microRNA (miRNA)-506-3p in the peripheral blood of patients with hypertension and to determine the biological functions and mechanisms of action of miR-506-3p. A total of 61 patients with primary hypertension were included in the present study. Peripheral blood was collected from all patients, as well as 31 healthy subjects who were included in a control group. The expression of miR-506-3p in peripheral blood was determined by reverse transcription-quantitative polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-506-3p mimics or miR-506-3p inhibitor. The proliferation and migration of HUVECs were determined using cell-counting kit 8 and Transwell assays, respectively. The cell cycle and apoptosis of HUVECs were detected by flow cytometry. The expression of Beclin1 (BECN1) protein, a potential target of miR-506-3p, was measured using western blotting. A dual-luciferase reporter assay was performed to determine the interaction between BECN1 and miR-506-3p. It was demonstrated that miR-506-3p expression in the peripheral blood of patients with patients was upregulated and dependent on the severity of hypertension. miR-506-3p overexpression inhibited the proliferation and migration of HUVECs. In addition, miR-506-3p inhibited the transition from the G1 phase to the S-phase in HUVECs. Overexpression of miR-506-3p promoted the apoptosis of HUVECs. Notably, miR-506-3p downregulated the expression of BECN1 by directly binding to its 3′-untranslated region. The present study demonstrated that miR-506-3p expression is elevated in the peripheral blood of patients with hypertension and is associated with the severity of hypertension. By downregulating BECN1 expression, miR-506-3p aggravates injury in vascular endothelial cells by inhibiting the proliferation and migration of HUVECs, as well as promoting their apoptosis.
Rupture of weakened blood vessels could lead to severe intracerebral hemorrhage (ICH) and brain injuries. This study was designed to explore the roles of p75 neurotrophin receptor (p75 NTR) in neuronal autophagy in ICH rats. An ICH rat model was established, and then gain and loss of functions of p75 NTR in rat tissues were performed. Then, the pathologic morphology, water content, and inflammation in brain tissues were assessed. Western blot analysis was applied to detect the levels of inflammatory proteins, apoptosis-and autophagy-related proteins, and the mammalian target of rapamycin (mTOR) pathwayrelated proteins. Neuronal autophagy was further measured with mTOR activated. In vitro experiments were also performed on brain microvascular endothelial cells (BMECs) and astrocytes. Consequently, we found p75 NTR knockdown improved the pathologic morphology with reduced neuron damage, water content, permeability of blood-brain barrier and inflammation in ICH rat brain tissues. Besides, Knockdown of p75 NTR decreased neuronal apoptosis and inactivated mTOR signaling pathway, but it elevated the levels of autophagy-related proteins. In vivo results were reproduced in in vitro experiments. This study demonstrated that knockdown of p75 NTR could promote neuronal autophagy and reduce neuronal apoptosis via inactivating the mTOR pathway. We hope these findings could provide new therapeutic options for ICH treatment.
IntroductionCarotid atherosclerosis (CAS) is one of the main causes of cerebral infarction in the ageing population. Long non-coding RNA small nucleolar RNA host gene 16 (lnc-SNHG16) could promote the development of atherosclerosis. However, the mechanism of lnc-SNHG16 in CAS remains vague.Material and methodsThe expression levels of lnc-SNHG16, microRNA-30c-5p (miR-30c-5p) and disintegrin and metalloproteinase 10 (ADAM10) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and migration were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) and transwell assays, severally. The levels of interleukin-6 (IL-6), IL-β and tumor necrosis factor-α (TNF-α) were assessed by enzyme-linked immunosorbent assay (ELISA). Protein levels of spinal muscular atrophy (SMA), calponin and ADAM10 were examined by western blot assay. The binding relationship between miR-30c-5p and lnc-SNHG16 or ADAM10 was predicted by Starbase, then verified by the dual-luciferase reporter assay.ResultsLnc-SNHG16 and ADAM10 were increased, and miR-30c-5p was decreased in CAS patient and oxidized low-density lipoprotein (ox-LDL)-treated human aortic smooth muscle cells (hASMCs). Lnc-SNHG16 silencing repressed cell viability, migration, inflammation, facilitated differentiation in ox-LDL-treated hASMCs. Moreover, mechanical analysis proved that lnc-SNHG16 improved ADAM10 expression by sponging miR-30c-5p.ConclusionsOur data indicated that lnc-SNHG16 could regulate the progression of ox-LDL induced CAS model by the miR-30c-5p/ADAM10 axis, implying a potential therapeutic strategy for CAS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.