Edge computing has become one of the key enablers for ultra-reliable and low-latency communications in the industrial Internet of Things in the fifth generation communication systems, and is also a promising technology in the future sixth generation communication systems. In this work, we consider the application of edge computing to smart factories for mission-critical task offloading through wireless links. In such scenarios, although high end-to-end delays from the generation to completion of tasks happen with low probability, they may incur severe casualties and property loss, and should be seriously treated. Inspired by the risk management theory widely used in finance, we adopt the Conditional Value at Risk to capture the tail of the delay distribution. An upper bound of the Conditional Value at Risk is derived through analysis of the queues both at the devices and the edge computing servers. We aim to find out the optimal offloading policy taking into consideration both the average and the worst case delay performance of the system. Given that the formulated optimization problem is a non-convex mixed integer non-linear programming problem, a decomposition into sub-problems is performed and a two-stage heuristic algorithm is proposed. Simulation results validate our analysis and indicate that the proposed algorithm can reduce the risk in both the queuing and end-to-end delay.
The photoelectric pod provides angular information and distance information for the UAV (Unmanned Aerial Vehicle), and the UAV uses it to estimate the status information of the moving target. Since the measurement information of the photoelectric pod is the angle of sight and relative distance, the measurement equation contains some nonlinear functions in the Cartesian coordinate system, and the output frequency of the photoelectric pod is low. The improved unscented Kalman filter combines the function of prediction and correction, introduces the prior information of the target acceleration constraint, and uses the offline data to obtain steady gain, and then estimates the target state online. The simulation result show that the algorithm can track the target and need less time compared with the traditional unscented Kalman filter.
Improving the quality of experience (QoE) of video streaming is a significant task in the wireless network scenario. Buffer starvation in the transmission process will cause playback freeze, and a certain number of packets must be prefetched before the service restarts. Taking into account the shortcomings of buffer in video streaming services, this paper proposes a deep learning-based starvation probability calculation model and a reinforcement learning-based packet prefetching model. The deep learning approach extracts the correlation between different timing inputs through the recurrent neural network module to return an explicit result and the precise distribution of the number of buffer starvation. The reinforcement learning approach leverages a better trade-off between start-up/rebuffering delay and buffer starvation by adjusting the packet prefetching strategy, so that the long-term objective quality of experience (QoE) of the video stream is optimized. Our framework can be applied to actual scenarios including finite video streaming and long video streaming transmission.
Edge computing has become one of the key enablers for ultra-reliable and low-latency communications in the industrial Internet of Things in the fifth generation communication systems, and is also a promising technology in the future sixth generation communication systems. In this work, we consider the application of edge computing to smart factories for mission-critical task offloading through wireless links. In such scenarios, although high end-to-end delays from the generation to completion of tasks happen with low probability, they may incur severe casualties and property loss, and should be seriously treated. Inspired by the risk management theory widely used in finance, we adopt the Conditional Value at Risk to capture the tail of the delay distribution. An upper bound of the Conditional Value at Risk is derived through analysis of the queues both at the devices and the edge computing servers. We aim to find out the optimal offloading policy taking into consideration both the average and the worst case delay performance of the system. Given that the formulated optimization problem is a non-convex mixed integer non-linear programming problem, a decomposition into sub-problems is performed and a two-stage heuristic algorithm is proposed. Simulation results validate our analysis and indicate that the proposed algorithm can reduce the risk in both the queueing and end-to-end delay.
In the process of wireless network video streaming, especially in more complex scenarios (such as video transmission of 5G-powered drones), analyzing the quality of experience (QoE) of the video streaming is a very crucial task. Thus attention should be paid to the dynamic interaction between QoE indicators including buffer starvation probability and traffic load. This paper proposes a video streaming scheduling model based on reinforcement learning. By learning the correlation between user behavior and traffic patterns, a series of resource allocation strategies that optimize QoE indicators are obtained. Since there is a certain degree of randomness in the network status at each moment in the transmission process, the model introduces exploration rewards to solve the noise problem of random environments. At the same time, this mechanism enables the model to fully explore the environment even when the reward is sparse, so as to obtain an effective scheduling strategy. Simulation experiments have proved that our model can improve the long-term QoE of video streaming in different network environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.